Properties

Label 2-35700-1.1-c1-0-39
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 5·11-s − 13-s + 17-s + 3·19-s + 21-s + 5·23-s + 27-s − 2·29-s − 5·33-s − 2·37-s − 39-s + 7·41-s − 3·43-s − 12·47-s + 49-s + 51-s − 8·53-s + 3·57-s − 8·59-s + 6·61-s + 63-s + 8·67-s + 5·69-s + 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.50·11-s − 0.277·13-s + 0.242·17-s + 0.688·19-s + 0.218·21-s + 1.04·23-s + 0.192·27-s − 0.371·29-s − 0.870·33-s − 0.328·37-s − 0.160·39-s + 1.09·41-s − 0.457·43-s − 1.75·47-s + 1/7·49-s + 0.140·51-s − 1.09·53-s + 0.397·57-s − 1.04·59-s + 0.768·61-s + 0.125·63-s + 0.977·67-s + 0.601·69-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.21164927384967, −14.63550013784045, −14.17256231833901, −13.63749781317255, −13.04899636222628, −12.73677190007756, −12.16320845191700, −11.28954746890745, −11.05523820618692, −10.38506898682981, −9.758632764423103, −9.436528123260235, −8.645201125889379, −8.124856581276410, −7.684357544021706, −7.233460546035777, −6.524646940410374, −5.721899091932174, −4.957098522442593, −4.912512900220101, −3.833775269680686, −3.144519244234782, −2.674829045118261, −1.923362235318969, −1.092529388804019, 0, 1.092529388804019, 1.923362235318969, 2.674829045118261, 3.144519244234782, 3.833775269680686, 4.912512900220101, 4.957098522442593, 5.721899091932174, 6.524646940410374, 7.233460546035777, 7.684357544021706, 8.124856581276410, 8.645201125889379, 9.436528123260235, 9.758632764423103, 10.38506898682981, 11.05523820618692, 11.28954746890745, 12.16320845191700, 12.73677190007756, 13.04899636222628, 13.63749781317255, 14.17256231833901, 14.63550013784045, 15.21164927384967

Graph of the $Z$-function along the critical line