| L(s) = 1 | + (−0.773 − 0.634i)2-s + (0.195 + 0.980i)4-s + (0.980 + 0.195i)5-s + (−0.360 + 0.871i)7-s + (0.471 − 0.881i)8-s + (0.382 + 0.923i)9-s + (−0.634 − 0.773i)10-s + (−0.555 − 0.831i)11-s + (0.192 − 0.0382i)13-s + (0.831 − 0.444i)14-s + (−0.923 + 0.382i)16-s + (−1.35 + 1.35i)17-s + (0.290 − 0.956i)18-s + i·20-s + (−0.0980 + 0.995i)22-s + ⋯ |
| L(s) = 1 | + (−0.773 − 0.634i)2-s + (0.195 + 0.980i)4-s + (0.980 + 0.195i)5-s + (−0.360 + 0.871i)7-s + (0.471 − 0.881i)8-s + (0.382 + 0.923i)9-s + (−0.634 − 0.773i)10-s + (−0.555 − 0.831i)11-s + (0.192 − 0.0382i)13-s + (0.831 − 0.444i)14-s + (−0.923 + 0.382i)16-s + (−1.35 + 1.35i)17-s + (0.290 − 0.956i)18-s + i·20-s + (−0.0980 + 0.995i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8494535907\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8494535907\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.773 + 0.634i)T \) |
| 5 | \( 1 + (-0.980 - 0.195i)T \) |
| 11 | \( 1 + (0.555 + 0.831i)T \) |
| good | 3 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 7 | \( 1 + (0.360 - 0.871i)T + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (-0.192 + 0.0382i)T + (0.923 - 0.382i)T^{2} \) |
| 17 | \( 1 + (1.35 - 1.35i)T - iT^{2} \) |
| 19 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 - 1.11iT - T^{2} \) |
| 37 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (-1.05 + 0.704i)T + (0.382 - 0.923i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 59 | \( 1 + (1.92 + 0.382i)T + (0.923 + 0.382i)T^{2} \) |
| 61 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 71 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.591 - 1.42i)T + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + (-0.0382 - 0.192i)T + (-0.923 + 0.382i)T^{2} \) |
| 89 | \( 1 + (0.360 + 0.149i)T + (0.707 + 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.750256449248010570111531622358, −8.553973073280423232481795415068, −7.57690346006144974529322509443, −6.64331854540511035461551983227, −6.00730232066942225520695971631, −5.16864555958324970888741135539, −4.09567361504035034512885223319, −2.95863352797488012956802000282, −2.32749388102332860331254551019, −1.54737190424904292669768149908,
0.62867874128252294877770809220, 1.83391171225280683355676948516, 2.79338729432875077642192109980, 4.30677885396161432303982480010, 4.85653648036626052637084766863, 5.93033605570175714585428473270, 6.52408615224073494412442359810, 7.14277128283720777991016582908, 7.69605999266441772468775202969, 8.847696697560756817211597769200