| L(s) = 1 | + (0.881 − 0.471i)2-s + (0.555 − 0.831i)4-s + (−0.831 + 0.555i)5-s + (0.181 + 0.0750i)7-s + (0.0980 − 0.995i)8-s + (−0.923 + 0.382i)9-s + (−0.471 + 0.881i)10-s + (−0.980 − 0.195i)11-s + (−1.59 − 1.06i)13-s + (0.195 − 0.0192i)14-s + (−0.382 − 0.923i)16-s + (−1.09 + 1.09i)17-s + (−0.634 + 0.773i)18-s + i·20-s + (−0.956 + 0.290i)22-s + ⋯ |
| L(s) = 1 | + (0.881 − 0.471i)2-s + (0.555 − 0.831i)4-s + (−0.831 + 0.555i)5-s + (0.181 + 0.0750i)7-s + (0.0980 − 0.995i)8-s + (−0.923 + 0.382i)9-s + (−0.471 + 0.881i)10-s + (−0.980 − 0.195i)11-s + (−1.59 − 1.06i)13-s + (0.195 − 0.0192i)14-s + (−0.382 − 0.923i)16-s + (−1.09 + 1.09i)17-s + (−0.634 + 0.773i)18-s + i·20-s + (−0.956 + 0.290i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1244826972\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1244826972\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.881 + 0.471i)T \) |
| 5 | \( 1 + (0.831 - 0.555i)T \) |
| 11 | \( 1 + (0.980 + 0.195i)T \) |
| good | 3 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (-0.181 - 0.0750i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (1.59 + 1.06i)T + (0.382 + 0.923i)T^{2} \) |
| 17 | \( 1 + (1.09 - 1.09i)T - iT^{2} \) |
| 19 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 23 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 - 1.96iT - T^{2} \) |
| 37 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.183 + 0.924i)T + (-0.923 - 0.382i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 59 | \( 1 + (1.38 - 0.923i)T + (0.382 - 0.923i)T^{2} \) |
| 61 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 71 | \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-1.62 + 0.674i)T + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + (-1.06 + 1.59i)T + (-0.382 - 0.923i)T^{2} \) |
| 89 | \( 1 + (0.425 - 1.02i)T + (-0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.161694045425075958601670488669, −7.55897887542072222271946276697, −6.78481891327251148834811517303, −5.88611958245674744148180973948, −5.09254870050523863522257725702, −4.61317638115082202630022216010, −3.39933682856084030070730888112, −2.85052573071785043900093751090, −2.09212806490333753818362041755, −0.04670061922637619141555486746,
2.27117417559889315359832171227, 2.85591340416006339272439922765, 4.05349328202939786499044983193, 4.73172070375316493598389576646, 5.12686713822187074590277464067, 6.16678844136835223998087607449, 7.00714467231458309658237548816, 7.65331361426746790153822808928, 8.122498559885652489585900344490, 9.113032113042677103171640466872