| L(s) = 1 | + (0.366 − 0.366i)3-s + (−0.866 + 0.5i)5-s + 0.732i·9-s − i·11-s + (−0.133 + 0.5i)15-s + (1.36 − 1.36i)23-s + (0.499 − 0.866i)25-s + (0.633 + 0.633i)27-s + i·31-s + (−0.366 − 0.366i)33-s + (0.366 − 0.366i)37-s + (−0.366 − 0.633i)45-s + (1 + i)47-s + i·49-s + (1 + i)53-s + ⋯ |
| L(s) = 1 | + (0.366 − 0.366i)3-s + (−0.866 + 0.5i)5-s + 0.732i·9-s − i·11-s + (−0.133 + 0.5i)15-s + (1.36 − 1.36i)23-s + (0.499 − 0.866i)25-s + (0.633 + 0.633i)27-s + i·31-s + (−0.366 − 0.366i)33-s + (0.366 − 0.366i)37-s + (−0.366 − 0.633i)45-s + (1 + i)47-s + i·49-s + (1 + i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.254892149\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.254892149\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + iT \) |
| good | 3 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - iT - T^{2} \) |
| 37 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-1 - i)T + iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 71 | \( 1 + 1.73iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + iT - T^{2} \) |
| 97 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.563024032167143857703740813717, −8.070911599258350399288473287016, −7.27211143591740624472733861088, −6.76540062329514853922926615823, −5.80833310190659282912037491624, −4.86457783809775548302963082359, −4.06437807779783967174474678774, −3.01741973512021167931426175034, −2.54894535252613818460743548308, −1.00246733385171641448414528238,
0.972635815056986707693128646543, 2.34942974223841877642217657175, 3.52911326189471457829587341091, 3.95790545309948806474679381960, 4.87543184082141357472029269702, 5.54662003530230024968124048549, 6.82139458468136578600172912307, 7.22727067934218682571770720760, 8.130727219521576512932279233143, 8.751518245299808202750864330835