L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 0.999·8-s + 0.999·10-s + (−0.5 + 0.866i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 6·17-s + 2·19-s + (−0.499 − 0.866i)20-s + (1.5 − 2.59i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.223 + 0.387i)5-s + (0.188 + 0.327i)7-s + 0.353·8-s + 0.316·10-s + (−0.138 + 0.240i)13-s + (0.133 − 0.231i)14-s + (−0.125 − 0.216i)16-s − 1.45·17-s + 0.458·19-s + (−0.111 − 0.193i)20-s + (0.312 − 0.541i)23-s + (−0.0999 − 0.173i)25-s + 0.196·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5561275709\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5561275709\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10T + 37T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.5 - 7.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 + 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 8T + 73T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.5 + 2.59i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.507956388059098215677406796066, −7.59111207774277727182869205456, −6.93263306412108027337848290074, −6.14920529501511305540640554865, −5.06246024472381815737314348866, −4.34615361725745422030423369132, −3.42989562433389133003758821818, −2.53136807947845811277760555534, −1.73501120708111865183091680574, −0.20594008064651532136076711964,
1.08864296429933281122683531749, 2.24527370673015751907489266332, 3.55603733931769555621550046886, 4.40059508050395617108056610518, 5.16677793163260823100821200612, 5.84513945826180206815584518290, 6.92708129409104874384433886132, 7.26834967997743450219227197002, 8.144755256659441386989130882212, 8.840537649475354702775836801116