| L(s) = 1 | + (1.10 − 1.91i)2-s + (−1.43 − 2.48i)4-s + (−1.80 − 3.12i)5-s + (0.540 − 0.935i)7-s − 1.90·8-s − 7.95·10-s + (−2.14 + 3.71i)11-s + (0.5 + 0.866i)13-s + (−1.19 − 2.06i)14-s + (0.762 − 1.32i)16-s + 2.31·17-s + 1.50·19-s + (−5.16 + 8.94i)20-s + (4.72 + 8.19i)22-s + (−3.54 − 6.13i)23-s + ⋯ |
| L(s) = 1 | + (0.779 − 1.35i)2-s + (−0.716 − 1.24i)4-s + (−0.806 − 1.39i)5-s + (0.204 − 0.353i)7-s − 0.673·8-s − 2.51·10-s + (−0.646 + 1.11i)11-s + (0.138 + 0.240i)13-s + (−0.318 − 0.551i)14-s + (0.190 − 0.330i)16-s + 0.562·17-s + 0.344·19-s + (−1.15 + 2.00i)20-s + (1.00 + 1.74i)22-s + (−0.738 − 1.27i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.144i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.120225 - 1.65057i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.120225 - 1.65057i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| good | 2 | \( 1 + (-1.10 + 1.91i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.80 + 3.12i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.540 + 0.935i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.14 - 3.71i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2.31T + 17T^{2} \) |
| 19 | \( 1 - 1.50T + 19T^{2} \) |
| 23 | \( 1 + (3.54 + 6.13i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.86 + 4.96i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.22 + 2.11i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.00T + 37T^{2} \) |
| 41 | \( 1 + (-5.29 - 9.16i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.67 + 6.36i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.992 - 1.71i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 11.2T + 53T^{2} \) |
| 59 | \( 1 + (-1.84 - 3.20i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.840 + 1.45i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.46 - 4.27i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.07T + 71T^{2} \) |
| 73 | \( 1 + 3.54T + 73T^{2} \) |
| 79 | \( 1 + (2.03 - 3.52i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.31 - 12.6i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6.03T + 89T^{2} \) |
| 97 | \( 1 + (-0.0682 + 0.118i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36512248926972433442147590712, −10.28722136373538654955734376531, −9.551111250965302897811337959545, −8.272989682538362006500705337272, −7.47408177665052256254819807689, −5.58218356691221934686639589894, −4.41454994164041735153562732972, −4.22701188614519312836912640118, −2.47820474559038388793995970140, −0.971629584716324693052504841184,
3.02622584288962884317655210907, 3.88395943743011981692943340894, 5.40649433605397650427763381884, 6.05493493636775160291753627446, 7.21852580144919203847707428729, 7.72934296460383360236998158002, 8.621775515541380092183385814280, 10.27342995967665285089905030410, 11.09406060855394867646238224591, 11.94697055856703445263007205287