L(s) = 1 | − 4i·2-s + 23i·3-s − 16·4-s + 92·6-s + 49i·7-s + 64i·8-s − 286·9-s + 555·11-s − 368i·12-s + 241i·13-s + 196·14-s + 256·16-s − 1.49e3i·17-s + 1.14e3i·18-s + 2.03e3·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.47i·3-s − 0.5·4-s + 1.04·6-s + 0.377i·7-s + 0.353i·8-s − 1.17·9-s + 1.38·11-s − 0.737i·12-s + 0.395i·13-s + 0.267·14-s + 0.250·16-s − 1.25i·17-s + 0.832i·18-s + 1.29·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
56.1343 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
2.210828236 |
L(21) |
≈ |
2.210828236 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 7 | 1−49iT |
good | 3 | 1−23iT−243T2 |
| 11 | 1−555T+1.61e5T2 |
| 13 | 1−241iT−3.71e5T2 |
| 17 | 1+1.49e3iT−1.41e6T2 |
| 19 | 1−2.03e3T+2.47e6T2 |
| 23 | 1−1.23e3iT−6.43e6T2 |
| 29 | 1−5.00e3T+2.05e7T2 |
| 31 | 1−5.69e3T+2.86e7T2 |
| 37 | 1+5.60e3iT−6.93e7T2 |
| 41 | 1+2.42e3T+1.15e8T2 |
| 43 | 1+602iT−1.47e8T2 |
| 47 | 1+2.31e4iT−2.29e8T2 |
| 53 | 1−2.52e4iT−4.18e8T2 |
| 59 | 1+5.72e3T+7.14e8T2 |
| 61 | 1+3.61e4T+8.44e8T2 |
| 67 | 1−6.61e4iT−1.35e9T2 |
| 71 | 1−1.60e4T+1.80e9T2 |
| 73 | 1−8.04e4iT−2.07e9T2 |
| 79 | 1−6.41e4T+3.07e9T2 |
| 83 | 1−1.06e5iT−3.93e9T2 |
| 89 | 1−7.16e4T+5.58e9T2 |
| 97 | 1−1.51e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79436551992783854040129524485, −9.665584866555970450980743718289, −9.456745655161154827255724815166, −8.531504222638364019542957352750, −6.96674019568112547110125440797, −5.53427091592031866883421927762, −4.63320630788029861859570397367, −3.75633852047851529771488045172, −2.77116584728048343214059821393, −1.06191224531082288781426379242,
0.73413857434771612288531027909, 1.55533415445948253457156174616, 3.28007492211831578059512920654, 4.66975685954181328755070924381, 6.25026670490442218478676980501, 6.49643343210158103303950850906, 7.63559629086931441032039897191, 8.221087832401596413136055544246, 9.301828437467604673834132144747, 10.46105753580863299980992283273