L(s) = 1 | + 4i·2-s − 23i·3-s − 16·4-s + 92·6-s − 49i·7-s − 64i·8-s − 286·9-s + 555·11-s + 368i·12-s − 241i·13-s + 196·14-s + 256·16-s + 1.49e3i·17-s − 1.14e3i·18-s + 2.03e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.47i·3-s − 0.5·4-s + 1.04·6-s − 0.377i·7-s − 0.353i·8-s − 1.17·9-s + 1.38·11-s + 0.737i·12-s − 0.395i·13-s + 0.267·14-s + 0.250·16-s + 1.25i·17-s − 0.832i·18-s + 1.29·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.210828236\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.210828236\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 49iT \) |
good | 3 | \( 1 + 23iT - 243T^{2} \) |
| 11 | \( 1 - 555T + 1.61e5T^{2} \) |
| 13 | \( 1 + 241iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 1.49e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.03e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 1.23e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 5.00e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 5.69e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 5.60e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 2.42e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 602iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 2.31e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 2.52e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 5.72e3T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.61e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 6.61e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 1.60e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 8.04e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.41e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.06e5iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 7.16e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.51e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46105753580863299980992283273, −9.301828437467604673834132144747, −8.221087832401596413136055544246, −7.63559629086931441032039897191, −6.49643343210158103303950850906, −6.25026670490442218478676980501, −4.66975685954181328755070924381, −3.28007492211831578059512920654, −1.55533415445948253457156174616, −0.73413857434771612288531027909,
1.06191224531082288781426379242, 2.77116584728048343214059821393, 3.75633852047851529771488045172, 4.63320630788029861859570397367, 5.53427091592031866883421927762, 6.96674019568112547110125440797, 8.531504222638364019542957352750, 9.456745655161154827255724815166, 9.665584866555970450980743718289, 10.79436551992783854040129524485