L(s) = 1 | − 4i·2-s − 17i·3-s − 16·4-s − 68·6-s + 49i·7-s + 64i·8-s − 46·9-s − 715·11-s + 272i·12-s + 331i·13-s + 196·14-s + 256·16-s + 1.69e3i·17-s + 184i·18-s + 1.71e3·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.09i·3-s − 0.5·4-s − 0.771·6-s + 0.377i·7-s + 0.353i·8-s − 0.189·9-s − 1.78·11-s + 0.545i·12-s + 0.543i·13-s + 0.267·14-s + 0.250·16-s + 1.42i·17-s + 0.133i·18-s + 1.09·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.447+0.894i)Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
56.1343 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :5/2), 0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.588386381 |
L(21) |
≈ |
1.588386381 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 7 | 1−49iT |
good | 3 | 1+17iT−243T2 |
| 11 | 1+715T+1.61e5T2 |
| 13 | 1−331iT−3.71e5T2 |
| 17 | 1−1.69e3iT−1.41e6T2 |
| 19 | 1−1.71e3T+2.47e6T2 |
| 23 | 1+3.95e3iT−6.43e6T2 |
| 29 | 1+4.57e3T+2.05e7T2 |
| 31 | 1−6.75e3T+2.86e7T2 |
| 37 | 1−1.65e4iT−6.93e7T2 |
| 41 | 1−1.88e4T+1.15e8T2 |
| 43 | 1−2.25e3iT−1.47e8T2 |
| 47 | 1−537iT−2.29e8T2 |
| 53 | 1+1.09e4iT−4.18e8T2 |
| 59 | 1−2.59e4T+7.14e8T2 |
| 61 | 1−3.91e4T+8.44e8T2 |
| 67 | 1+4.41e3iT−1.35e9T2 |
| 71 | 1+3.18e4T+1.80e9T2 |
| 73 | 1+5.01e3iT−2.07e9T2 |
| 79 | 1−2.79e4T+3.07e9T2 |
| 83 | 1−3.76e4iT−3.93e9T2 |
| 89 | 1−1.72e4T+5.58e9T2 |
| 97 | 1−6.31e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54164765101383559841887780534, −9.789823787617255118432247411140, −8.381581213438818775333932740666, −7.903656042881116029370356597644, −6.68627590212716470361602700298, −5.62237699697275029917362230310, −4.43241809883464917781612230318, −2.85038191261791535347148887050, −2.01283574758085709764277292845, −0.800794083188094380774345139492,
0.58102727409788131478990997147, 2.81557602060556826075794594913, 3.94805097309223833837832440191, 5.17148082133071264803394222048, 5.51441757194966960079643938234, 7.39442305784458136179207890557, 7.67772656745840568474321369764, 9.176747166514246907711093275198, 9.799375259608524416022015197766, 10.57752443192637267844597930175