L(s) = 1 | + 4i·2-s + 17i·3-s − 16·4-s − 68·6-s − 49i·7-s − 64i·8-s − 46·9-s − 715·11-s − 272i·12-s − 331i·13-s + 196·14-s + 256·16-s − 1.69e3i·17-s − 184i·18-s + 1.71e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.09i·3-s − 0.5·4-s − 0.771·6-s − 0.377i·7-s − 0.353i·8-s − 0.189·9-s − 1.78·11-s − 0.545i·12-s − 0.543i·13-s + 0.267·14-s + 0.250·16-s − 1.42i·17-s − 0.133i·18-s + 1.09·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.588386381\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.588386381\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 49iT \) |
good | 3 | \( 1 - 17iT - 243T^{2} \) |
| 11 | \( 1 + 715T + 1.61e5T^{2} \) |
| 13 | \( 1 + 331iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.69e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.71e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 3.95e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 4.57e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 6.75e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.65e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.88e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 2.25e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 537iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 1.09e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 2.59e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 3.91e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 4.41e3iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 3.18e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 5.01e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 2.79e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 3.76e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 1.72e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 6.31e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57752443192637267844597930175, −9.799375259608524416022015197766, −9.176747166514246907711093275198, −7.67772656745840568474321369764, −7.39442305784458136179207890557, −5.51441757194966960079643938234, −5.17148082133071264803394222048, −3.94805097309223833837832440191, −2.81557602060556826075794594913, −0.58102727409788131478990997147,
0.800794083188094380774345139492, 2.01283574758085709764277292845, 2.85038191261791535347148887050, 4.43241809883464917781612230318, 5.62237699697275029917362230310, 6.68627590212716470361602700298, 7.903656042881116029370356597644, 8.381581213438818775333932740666, 9.789823787617255118432247411140, 10.54164765101383559841887780534