L(s) = 1 | + (0.623 − 0.781i)2-s + (−1.62 − 0.781i)3-s + (−0.222 − 0.974i)4-s + (−1.62 + 0.781i)6-s + (0.900 + 0.433i)7-s + (−0.900 − 0.433i)8-s + (1.40 + 1.75i)9-s + (−0.777 + 0.974i)11-s + (−0.400 + 1.75i)12-s + (0.777 − 0.974i)13-s + (0.900 − 0.433i)14-s + (−0.900 + 0.433i)16-s + (−0.222 + 0.974i)17-s + 2.24·18-s + (−1.12 − 1.40i)21-s + (0.277 + 1.21i)22-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)2-s + (−1.62 − 0.781i)3-s + (−0.222 − 0.974i)4-s + (−1.62 + 0.781i)6-s + (0.900 + 0.433i)7-s + (−0.900 − 0.433i)8-s + (1.40 + 1.75i)9-s + (−0.777 + 0.974i)11-s + (−0.400 + 1.75i)12-s + (0.777 − 0.974i)13-s + (0.900 − 0.433i)14-s + (−0.900 + 0.433i)16-s + (−0.222 + 0.974i)17-s + 2.24·18-s + (−1.12 − 1.40i)21-s + (0.277 + 1.21i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.518 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.518 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.021723338\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.021723338\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.623 + 0.781i)T \) |
| 7 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (0.222 - 0.974i)T \) |
good | 3 | \( 1 + (1.62 + 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 11 | \( 1 + (0.777 - 0.974i)T + (-0.222 - 0.974i)T^{2} \) |
| 13 | \( 1 + (-0.777 + 0.974i)T + (-0.222 - 0.974i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.277 - 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 29 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 - 1.80T + T^{2} \) |
| 37 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (-0.400 - 1.75i)T + (-0.900 + 0.433i)T^{2} \) |
| 59 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 61 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.400 + 1.75i)T + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 79 | \( 1 + 1.24T + T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (1.12 + 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.620002589089613447096956715568, −7.76570939159396396936076542064, −7.04189358124036685068515440408, −5.99553490347317809545188594790, −5.68359267844200387911740295886, −4.92891450562438377191137973868, −4.37667816082238214350833080187, −2.95024773083053095708513365951, −1.79600152205025435696697965688, −1.15505477340255164107469844123,
0.74815926097795494371333911863, 2.75537476225048687331908415653, 4.01952632883530179143597315265, 4.54704064774992225096683047210, 5.09839701099981106742268361505, 5.79706560646134139941565263017, 6.60343976259870295927130038323, 6.96542793320295559174796891653, 8.262490520590866049362649168920, 8.629857139139583053639834499056