Properties

Label 3332.2787
Modulus $3332$
Conductor $3332$
Order $14$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,2,7]))
 
pari: [g,chi] = znchar(Mod(2787,3332))
 

Basic properties

Modulus: \(3332\)
Conductor: \(3332\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3332.be

\(\chi_{3332}(407,\cdot)\) \(\chi_{3332}(1359,\cdot)\) \(\chi_{3332}(1835,\cdot)\) \(\chi_{3332}(2311,\cdot)\) \(\chi_{3332}(2787,\cdot)\) \(\chi_{3332}(3263,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((1667,885,785)\) → \((-1,e\left(\frac{1}{7}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 3332 }(2787, a) \) \(-1\)\(1\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(-1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3332 }(2787,a) \;\) at \(\;a = \) e.g. 2