L(s) = 1 | − 5.84i·2-s + 12.3i·3-s − 2.10·4-s + 72.1·6-s − 135. i·7-s − 174. i·8-s + 90.3·9-s + 564.·11-s − 26.0i·12-s − 169i·13-s − 788.·14-s − 1.08e3·16-s − 1.44e3i·17-s − 527. i·18-s + 530.·19-s + ⋯ |
L(s) = 1 | − 1.03i·2-s + 0.792i·3-s − 0.0658·4-s + 0.818·6-s − 1.04i·7-s − 0.964i·8-s + 0.371·9-s + 1.40·11-s − 0.0521i·12-s − 0.277i·13-s − 1.07·14-s − 1.06·16-s − 1.21i·17-s − 0.383i·18-s + 0.337·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
2.565074570 |
L(21) |
≈ |
2.565074570 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1+5.84iT−32T2 |
| 3 | 1−12.3iT−243T2 |
| 7 | 1+135.iT−1.68e4T2 |
| 11 | 1−564.T+1.61e5T2 |
| 17 | 1+1.44e3iT−1.41e6T2 |
| 19 | 1−530.T+2.47e6T2 |
| 23 | 1−4.71e3iT−6.43e6T2 |
| 29 | 1+3.32e3T+2.05e7T2 |
| 31 | 1−1.86e3T+2.86e7T2 |
| 37 | 1+1.02e4iT−6.93e7T2 |
| 41 | 1+1.79e4T+1.15e8T2 |
| 43 | 1−7.56e3iT−1.47e8T2 |
| 47 | 1+2.40e4iT−2.29e8T2 |
| 53 | 1+5.49e3iT−4.18e8T2 |
| 59 | 1−4.54e4T+7.14e8T2 |
| 61 | 1−2.93e4T+8.44e8T2 |
| 67 | 1+6.99e4iT−1.35e9T2 |
| 71 | 1−4.91e4T+1.80e9T2 |
| 73 | 1+4.13e4iT−2.07e9T2 |
| 79 | 1+4.84e4T+3.07e9T2 |
| 83 | 1+1.06e5iT−3.93e9T2 |
| 89 | 1−2.33e4T+5.58e9T2 |
| 97 | 1−7.75e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46110039864845255293462895732, −9.730267574420325740589210375175, −9.218924549307231840933372186383, −7.42288592828611569139328357492, −6.79071395632317220731356604531, −5.12575520538648091855957770060, −3.84411263116080442237939057130, −3.51378286914115127078644807307, −1.72919836255097088158160211516, −0.70166395548283325072369679538,
1.37856277933832828852985977666, 2.40642332623097353548037067330, 4.20250611857900345369555922285, 5.58792442969632903347865325850, 6.54695905359745573786327372048, 6.86827011961163260066104223822, 8.251932034365359853323552101508, 8.685109261953246114143489033067, 9.976513830803770978630269207724, 11.35823990547219859818358347985