Properties

Label 2-325-5.4-c5-0-32
Degree $2$
Conductor $325$
Sign $-0.447 - 0.894i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.84i·2-s − 12.3i·3-s − 2.10·4-s + 72.1·6-s + 135. i·7-s + 174. i·8-s + 90.3·9-s + 564.·11-s + 26.0i·12-s + 169i·13-s − 788.·14-s − 1.08e3·16-s + 1.44e3i·17-s + 527. i·18-s + 530.·19-s + ⋯
L(s)  = 1  + 1.03i·2-s − 0.792i·3-s − 0.0658·4-s + 0.818·6-s + 1.04i·7-s + 0.964i·8-s + 0.371·9-s + 1.40·11-s + 0.0521i·12-s + 0.277i·13-s − 1.07·14-s − 1.06·16-s + 1.21i·17-s + 0.383i·18-s + 0.337·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.565074570\)
\(L(\frac12)\) \(\approx\) \(2.565074570\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169iT \)
good2 \( 1 - 5.84iT - 32T^{2} \)
3 \( 1 + 12.3iT - 243T^{2} \)
7 \( 1 - 135. iT - 1.68e4T^{2} \)
11 \( 1 - 564.T + 1.61e5T^{2} \)
17 \( 1 - 1.44e3iT - 1.41e6T^{2} \)
19 \( 1 - 530.T + 2.47e6T^{2} \)
23 \( 1 + 4.71e3iT - 6.43e6T^{2} \)
29 \( 1 + 3.32e3T + 2.05e7T^{2} \)
31 \( 1 - 1.86e3T + 2.86e7T^{2} \)
37 \( 1 - 1.02e4iT - 6.93e7T^{2} \)
41 \( 1 + 1.79e4T + 1.15e8T^{2} \)
43 \( 1 + 7.56e3iT - 1.47e8T^{2} \)
47 \( 1 - 2.40e4iT - 2.29e8T^{2} \)
53 \( 1 - 5.49e3iT - 4.18e8T^{2} \)
59 \( 1 - 4.54e4T + 7.14e8T^{2} \)
61 \( 1 - 2.93e4T + 8.44e8T^{2} \)
67 \( 1 - 6.99e4iT - 1.35e9T^{2} \)
71 \( 1 - 4.91e4T + 1.80e9T^{2} \)
73 \( 1 - 4.13e4iT - 2.07e9T^{2} \)
79 \( 1 + 4.84e4T + 3.07e9T^{2} \)
83 \( 1 - 1.06e5iT - 3.93e9T^{2} \)
89 \( 1 - 2.33e4T + 5.58e9T^{2} \)
97 \( 1 + 7.75e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35823990547219859818358347985, −9.976513830803770978630269207724, −8.685109261953246114143489033067, −8.251932034365359853323552101508, −6.86827011961163260066104223822, −6.54695905359745573786327372048, −5.58792442969632903347865325850, −4.20250611857900345369555922285, −2.40642332623097353548037067330, −1.37856277933832828852985977666, 0.70166395548283325072369679538, 1.72919836255097088158160211516, 3.51378286914115127078644807307, 3.84411263116080442237939057130, 5.12575520538648091855957770060, 6.79071395632317220731356604531, 7.42288592828611569139328357492, 9.218924549307231840933372186383, 9.730267574420325740589210375175, 10.46110039864845255293462895732

Graph of the $Z$-function along the critical line