L(s) = 1 | − 9.60i·2-s − 25.9i·3-s − 60.1·4-s − 248.·6-s + 181. i·7-s + 270. i·8-s − 428.·9-s + 512.·11-s + 1.56e3i·12-s − 169i·13-s + 1.74e3·14-s + 672.·16-s + 1.66e3i·17-s + 4.11e3i·18-s + 464.·19-s + ⋯ |
L(s) = 1 | − 1.69i·2-s − 1.66i·3-s − 1.88·4-s − 2.82·6-s + 1.40i·7-s + 1.49i·8-s − 1.76·9-s + 1.27·11-s + 3.12i·12-s − 0.277i·13-s + 2.37·14-s + 0.656·16-s + 1.39i·17-s + 2.99i·18-s + 0.294·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.559817433 |
L(21) |
≈ |
1.559817433 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1+9.60iT−32T2 |
| 3 | 1+25.9iT−243T2 |
| 7 | 1−181.iT−1.68e4T2 |
| 11 | 1−512.T+1.61e5T2 |
| 17 | 1−1.66e3iT−1.41e6T2 |
| 19 | 1−464.T+2.47e6T2 |
| 23 | 1−2.09e3iT−6.43e6T2 |
| 29 | 1+5.93e3T+2.05e7T2 |
| 31 | 1−8.39e3T+2.86e7T2 |
| 37 | 1+8.90e3iT−6.93e7T2 |
| 41 | 1−3.25e3T+1.15e8T2 |
| 43 | 1−5.95e3iT−1.47e8T2 |
| 47 | 1+1.07e4iT−2.29e8T2 |
| 53 | 1−3.93e4iT−4.18e8T2 |
| 59 | 1−3.94e3T+7.14e8T2 |
| 61 | 1+4.14e4T+8.44e8T2 |
| 67 | 1−1.85e4iT−1.35e9T2 |
| 71 | 1−7.03e4T+1.80e9T2 |
| 73 | 1−7.86e4iT−2.07e9T2 |
| 79 | 1−7.17e4T+3.07e9T2 |
| 83 | 1+208.iT−3.93e9T2 |
| 89 | 1−4.35e4T+5.58e9T2 |
| 97 | 1−1.52e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89146354922169951510757112346, −9.476142008553620246253101588813, −8.820113150144340549271879017196, −7.87364698156272260791929868705, −6.45924533345049344114644287252, −5.59928607361801479129843137393, −3.83967728628371824602506533693, −2.63008633393877599448307514883, −1.79114366627448945750490698218, −1.03658712336380190183131111077,
0.49986923259793733657225560343, 3.51620124747826154007512723749, 4.42463094303585851322394886075, 4.94456368766598374432465716330, 6.30931917808127686327597705953, 7.09915689264292416481870545801, 8.193440158638402609765536147099, 9.307825465624314241780469731357, 9.676248607722121466522662707605, 10.80076137437969879670734338116