L(s) = 1 | + 9.60i·2-s + 25.9i·3-s − 60.1·4-s − 248.·6-s − 181. i·7-s − 270. i·8-s − 428.·9-s + 512.·11-s − 1.56e3i·12-s + 169i·13-s + 1.74e3·14-s + 672.·16-s − 1.66e3i·17-s − 4.11e3i·18-s + 464.·19-s + ⋯ |
L(s) = 1 | + 1.69i·2-s + 1.66i·3-s − 1.88·4-s − 2.82·6-s − 1.40i·7-s − 1.49i·8-s − 1.76·9-s + 1.27·11-s − 3.12i·12-s + 0.277i·13-s + 2.37·14-s + 0.656·16-s − 1.39i·17-s − 2.99i·18-s + 0.294·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.559817433\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.559817433\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 - 169iT \) |
good | 2 | \( 1 - 9.60iT - 32T^{2} \) |
| 3 | \( 1 - 25.9iT - 243T^{2} \) |
| 7 | \( 1 + 181. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 512.T + 1.61e5T^{2} \) |
| 17 | \( 1 + 1.66e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 464.T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.09e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 5.93e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 8.39e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 8.90e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 3.25e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 5.95e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.07e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 3.93e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 3.94e3T + 7.14e8T^{2} \) |
| 61 | \( 1 + 4.14e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.85e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 7.03e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 7.86e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 7.17e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 208. iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 4.35e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.52e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80076137437969879670734338116, −9.676248607722121466522662707605, −9.307825465624314241780469731357, −8.193440158638402609765536147099, −7.09915689264292416481870545801, −6.30931917808127686327597705953, −4.94456368766598374432465716330, −4.42463094303585851322394886075, −3.51620124747826154007512723749, −0.49986923259793733657225560343,
1.03658712336380190183131111077, 1.79114366627448945750490698218, 2.63008633393877599448307514883, 3.83967728628371824602506533693, 5.59928607361801479129843137393, 6.45924533345049344114644287252, 7.87364698156272260791929868705, 8.820113150144340549271879017196, 9.476142008553620246253101588813, 10.89146354922169951510757112346