Properties

Label 2-325-5.4-c5-0-22
Degree 22
Conductor 325325
Sign 0.4470.894i0.447 - 0.894i
Analytic cond. 52.124752.1247
Root an. cond. 7.219747.21974
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.30i·2-s + 19.9i·3-s + 13.4·4-s + 85.7·6-s − 125. i·7-s − 195. i·8-s − 153.·9-s − 709.·11-s + 267. i·12-s + 169i·13-s − 541.·14-s − 412.·16-s + 1.92e3i·17-s + 660. i·18-s + 2.16e3·19-s + ⋯
L(s)  = 1  − 0.761i·2-s + 1.27i·3-s + 0.420·4-s + 0.972·6-s − 0.970i·7-s − 1.08i·8-s − 0.631·9-s − 1.76·11-s + 0.537i·12-s + 0.277i·13-s − 0.738·14-s − 0.402·16-s + 1.61i·17-s + 0.480i·18-s + 1.37·19-s + ⋯

Functional equation

Λ(s)=(325s/2ΓC(s)L(s)=((0.4470.894i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(325s/2ΓC(s+5/2)L(s)=((0.4470.894i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 325325    =    52135^{2} \cdot 13
Sign: 0.4470.894i0.447 - 0.894i
Analytic conductor: 52.124752.1247
Root analytic conductor: 7.219747.21974
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ325(274,)\chi_{325} (274, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 325, ( :5/2), 0.4470.894i)(2,\ 325,\ (\ :5/2),\ 0.447 - 0.894i)

Particular Values

L(3)L(3) \approx 1.8687622961.868762296
L(12)L(\frac12) \approx 1.8687622961.868762296
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
13 1169iT 1 - 169iT
good2 1+4.30iT32T2 1 + 4.30iT - 32T^{2}
3 119.9iT243T2 1 - 19.9iT - 243T^{2}
7 1+125.iT1.68e4T2 1 + 125. iT - 1.68e4T^{2}
11 1+709.T+1.61e5T2 1 + 709.T + 1.61e5T^{2}
17 11.92e3iT1.41e6T2 1 - 1.92e3iT - 1.41e6T^{2}
19 12.16e3T+2.47e6T2 1 - 2.16e3T + 2.47e6T^{2}
23 1+305.iT6.43e6T2 1 + 305. iT - 6.43e6T^{2}
29 1+4.51e3T+2.05e7T2 1 + 4.51e3T + 2.05e7T^{2}
31 14.07e3T+2.86e7T2 1 - 4.07e3T + 2.86e7T^{2}
37 11.23e4iT6.93e7T2 1 - 1.23e4iT - 6.93e7T^{2}
41 11.44e4T+1.15e8T2 1 - 1.44e4T + 1.15e8T^{2}
43 11.71e4iT1.47e8T2 1 - 1.71e4iT - 1.47e8T^{2}
47 11.83e4iT2.29e8T2 1 - 1.83e4iT - 2.29e8T^{2}
53 1+1.19e4iT4.18e8T2 1 + 1.19e4iT - 4.18e8T^{2}
59 13.98e4T+7.14e8T2 1 - 3.98e4T + 7.14e8T^{2}
61 14.49e3T+8.44e8T2 1 - 4.49e3T + 8.44e8T^{2}
67 13.04e4iT1.35e9T2 1 - 3.04e4iT - 1.35e9T^{2}
71 1+1.45e4T+1.80e9T2 1 + 1.45e4T + 1.80e9T^{2}
73 15.90e4iT2.07e9T2 1 - 5.90e4iT - 2.07e9T^{2}
79 14.33e4T+3.07e9T2 1 - 4.33e4T + 3.07e9T^{2}
83 1+8.38e4iT3.93e9T2 1 + 8.38e4iT - 3.93e9T^{2}
89 1+1.24e5T+5.58e9T2 1 + 1.24e5T + 5.58e9T^{2}
97 1+9.38e4iT8.58e9T2 1 + 9.38e4iT - 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.81758068457538286230131278248, −10.11529049216487537033453336485, −9.717475237158655738298264330070, −8.143820951737986609468676762708, −7.22818184967704845702521039754, −5.81952955395064610627862380348, −4.59649190875203365213043732372, −3.70396176029634519911912063174, −2.74754488050629105512990070761, −1.18182845500242653281802114521, 0.49713505281481723689920794454, 2.19474872970745452066655912958, 2.76928972504518523842207236535, 5.36993818307635333805859072943, 5.60707924253176589405885651887, 7.05496998049196721546709166870, 7.50073226854556392182206880184, 8.238539906101703305680510650233, 9.447609336972541924403123672402, 10.80989694327476762588141881127

Graph of the ZZ-function along the critical line