L(s) = 1 | + 4.30i·2-s − 19.9i·3-s + 13.4·4-s + 85.7·6-s + 125. i·7-s + 195. i·8-s − 153.·9-s − 709.·11-s − 267. i·12-s − 169i·13-s − 541.·14-s − 412.·16-s − 1.92e3i·17-s − 660. i·18-s + 2.16e3·19-s + ⋯ |
L(s) = 1 | + 0.761i·2-s − 1.27i·3-s + 0.420·4-s + 0.972·6-s + 0.970i·7-s + 1.08i·8-s − 0.631·9-s − 1.76·11-s − 0.537i·12-s − 0.277i·13-s − 0.738·14-s − 0.402·16-s − 1.61i·17-s − 0.480i·18-s + 1.37·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.868762296\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.868762296\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + 169iT \) |
good | 2 | \( 1 - 4.30iT - 32T^{2} \) |
| 3 | \( 1 + 19.9iT - 243T^{2} \) |
| 7 | \( 1 - 125. iT - 1.68e4T^{2} \) |
| 11 | \( 1 + 709.T + 1.61e5T^{2} \) |
| 17 | \( 1 + 1.92e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.16e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 305. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 4.51e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 4.07e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.23e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.44e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.71e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.83e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 1.19e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 3.98e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 4.49e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 3.04e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.45e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 5.90e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 4.33e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.38e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 1.24e5T + 5.58e9T^{2} \) |
| 97 | \( 1 - 9.38e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80989694327476762588141881127, −9.447609336972541924403123672402, −8.238539906101703305680510650233, −7.50073226854556392182206880184, −7.05496998049196721546709166870, −5.60707924253176589405885651887, −5.36993818307635333805859072943, −2.76928972504518523842207236535, −2.19474872970745452066655912958, −0.49713505281481723689920794454,
1.18182845500242653281802114521, 2.74754488050629105512990070761, 3.70396176029634519911912063174, 4.59649190875203365213043732372, 5.81952955395064610627862380348, 7.22818184967704845702521039754, 8.143820951737986609468676762708, 9.717475237158655738298264330070, 10.11529049216487537033453336485, 10.81758068457538286230131278248