L(s) = 1 | + (1.5 − 0.866i)2-s + (1 + 1.73i)3-s + (0.5 − 0.866i)4-s + (3 + 1.73i)6-s + 1.73i·8-s + (−0.499 + 0.866i)9-s + 2·12-s + (2.5 − 2.59i)13-s + (2.49 + 4.33i)16-s + (−1.5 + 2.59i)17-s + 1.73i·18-s + (−3 − 1.73i)19-s + (−3 − 5.19i)23-s + (−2.99 + 1.73i)24-s + (1.5 − 6.06i)26-s + 4.00·27-s + ⋯ |
L(s) = 1 | + (1.06 − 0.612i)2-s + (0.577 + 0.999i)3-s + (0.250 − 0.433i)4-s + (1.22 + 0.707i)6-s + 0.612i·8-s + (−0.166 + 0.288i)9-s + 0.577·12-s + (0.693 − 0.720i)13-s + (0.624 + 1.08i)16-s + (−0.363 + 0.630i)17-s + 0.408i·18-s + (−0.688 − 0.397i)19-s + (−0.625 − 1.08i)23-s + (−0.612 + 0.353i)24-s + (0.294 − 1.18i)26-s + 0.769·27-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.964−0.265i)Λ(2−s)
Λ(s)=(=(325s/2ΓC(s+1/2)L(s)(0.964−0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.964−0.265i
|
Analytic conductor: |
2.59513 |
Root analytic conductor: |
1.61094 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :1/2), 0.964−0.265i)
|
Particular Values
L(1) |
≈ |
2.53310+0.341754i |
L(21) |
≈ |
2.53310+0.341754i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+(−2.5+2.59i)T |
good | 2 | 1+(−1.5+0.866i)T+(1−1.73i)T2 |
| 3 | 1+(−1−1.73i)T+(−1.5+2.59i)T2 |
| 7 | 1+(3.5+6.06i)T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 17 | 1+(1.5−2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3+1.73i)T+(9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.5+2.59i)T+(−14.5+25.1i)T2 |
| 31 | 1+3.46iT−31T2 |
| 37 | 1+(7.5−4.33i)T+(18.5−32.0i)T2 |
| 41 | 1+(4.5−2.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(−4+6.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+3.46iT−47T2 |
| 53 | 1−3T+53T2 |
| 59 | 1+(−6−3.46i)T+(29.5+51.0i)T2 |
| 61 | 1+(0.5−0.866i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3−1.73i)T+(33.5−58.0i)T2 |
| 71 | 1+(−3−1.73i)T+(35.5+61.4i)T2 |
| 73 | 1−1.73iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−13.8iT−83T2 |
| 89 | 1+(6−3.46i)T+(44.5−77.0i)T2 |
| 97 | 1+(6+3.46i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.71670396963559990504457926355, −10.68006628426900369941810750173, −10.15538143203771762204339424550, −8.765344190845017559391492768609, −8.260113470217641071535381697909, −6.47138951629164004319458304994, −5.27685297911296615657841987840, −4.19843180921805728322683579281, −3.59011244658650847893802284355, −2.36543313134968192161402685996,
1.71764745575139670633268757715, 3.36148963433361345498900085481, 4.53821836070801265433574188228, 5.77398399297014933904924571342, 6.73250033221242312623278317749, 7.39633874029440911504684500765, 8.487785112214251969283663091759, 9.512541038628644593229302144859, 10.82646376404256733503150508582, 12.03683157845317867412048565630