L(s) = 1 | + (1.5 + 0.866i)2-s + (1 − 1.73i)3-s + (0.5 + 0.866i)4-s + (3 − 1.73i)6-s − 1.73i·8-s + (−0.499 − 0.866i)9-s + 2·12-s + (2.5 + 2.59i)13-s + (2.49 − 4.33i)16-s + (−1.5 − 2.59i)17-s − 1.73i·18-s + (−3 + 1.73i)19-s + (−3 + 5.19i)23-s + (−2.99 − 1.73i)24-s + (1.5 + 6.06i)26-s + 4.00·27-s + ⋯ |
L(s) = 1 | + (1.06 + 0.612i)2-s + (0.577 − 0.999i)3-s + (0.250 + 0.433i)4-s + (1.22 − 0.707i)6-s − 0.612i·8-s + (−0.166 − 0.288i)9-s + 0.577·12-s + (0.693 + 0.720i)13-s + (0.624 − 1.08i)16-s + (−0.363 − 0.630i)17-s − 0.408i·18-s + (−0.688 + 0.397i)19-s + (−0.625 + 1.08i)23-s + (−0.612 − 0.353i)24-s + (0.294 + 1.18i)26-s + 0.769·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.53310 - 0.341754i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.53310 - 0.341754i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-2.5 - 2.59i)T \) |
good | 2 | \( 1 + (-1.5 - 0.866i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 - 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (7.5 + 4.33i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 + 2.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-6 + 3.46i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3 + 1.73i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 1.73i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (6 + 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6 - 3.46i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03683157845317867412048565630, −10.82646376404256733503150508582, −9.512541038628644593229302144859, −8.487785112214251969283663091759, −7.39633874029440911504684500765, −6.73250033221242312623278317749, −5.77398399297014933904924571342, −4.53821836070801265433574188228, −3.36148963433361345498900085481, −1.71764745575139670633268757715,
2.36543313134968192161402685996, 3.59011244658650847893802284355, 4.19843180921805728322683579281, 5.27685297911296615657841987840, 6.47138951629164004319458304994, 8.260113470217641071535381697909, 8.765344190845017559391492768609, 10.15538143203771762204339424550, 10.68006628426900369941810750173, 11.71670396963559990504457926355