L(s) = 1 | + (0.5 + 0.866i)5-s + (−1.68 + 2.92i)7-s + (1.18 − 2.05i)11-s + (1.68 + 2.92i)13-s + 6.74·17-s + 19-s + (2.68 + 4.65i)23-s + (−0.499 + 0.866i)25-s + (1.18 − 2.05i)29-s + (−5.55 − 9.62i)31-s − 3.37·35-s + 6·37-s + (0.127 + 0.221i)41-s + (2.37 − 4.10i)43-s + (−4.68 + 8.11i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (−0.637 + 1.10i)7-s + (0.357 − 0.619i)11-s + (0.467 + 0.809i)13-s + 1.63·17-s + 0.229·19-s + (0.560 + 0.970i)23-s + (−0.0999 + 0.173i)25-s + (0.220 − 0.381i)29-s + (−0.998 − 1.72i)31-s − 0.570·35-s + 0.986·37-s + (0.0199 + 0.0345i)41-s + (0.361 − 0.626i)43-s + (−0.683 + 1.18i)47-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.173−0.984i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.173−0.984i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(2161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), 0.173−0.984i)
|
Particular Values
L(1) |
≈ |
1.875237316 |
L(21) |
≈ |
1.875237316 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.5−0.866i)T |
good | 7 | 1+(1.68−2.92i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.18+2.05i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−1.68−2.92i)T+(−6.5+11.2i)T2 |
| 17 | 1−6.74T+17T2 |
| 19 | 1−T+19T2 |
| 23 | 1+(−2.68−4.65i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.18+2.05i)T+(−14.5−25.1i)T2 |
| 31 | 1+(5.55+9.62i)T+(−15.5+26.8i)T2 |
| 37 | 1−6T+37T2 |
| 41 | 1+(−0.127−0.221i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.37+4.10i)T+(−21.5−37.2i)T2 |
| 47 | 1+(4.68−8.11i)T+(−23.5−40.7i)T2 |
| 53 | 1+10.1T+53T2 |
| 59 | 1+(−2.5−4.33i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.37−11.0i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.372−0.644i)T+(−33.5+58.0i)T2 |
| 71 | 1−4.37T+71T2 |
| 73 | 1−14.7T+73T2 |
| 79 | 1+(−1.37+2.37i)T+(−39.5−68.4i)T2 |
| 83 | 1+(5−8.66i)T+(−41.5−71.8i)T2 |
| 89 | 1−4.37T+89T2 |
| 97 | 1+(−2.37+4.10i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.112783802350388738412434397114, −8.004662167093226283376283803339, −7.41014024188427632536959824248, −6.26406453239641901429180780728, −5.98208856926853479526461508057, −5.23706705582916443126165243521, −3.93021461278635452995412584924, −3.23919982772485728603187505649, −2.39379911977339480225420684982, −1.18736198595815857656106018395,
0.66615072709403905147191067825, 1.55121773493558672883958471402, 3.11879955324003492350427039399, 3.60148448259644478562198771181, 4.69608712032358468060580860442, 5.35588359540097145314319695253, 6.35099772989000685213767813321, 6.96814818203086534525728437085, 7.74736746467743313249571357043, 8.400077895531641708352019145881