L(s) = 1 | + (0.5 − 0.866i)5-s + (−1.68 − 2.92i)7-s + (1.18 + 2.05i)11-s + (1.68 − 2.92i)13-s + 6.74·17-s + 19-s + (2.68 − 4.65i)23-s + (−0.499 − 0.866i)25-s + (1.18 + 2.05i)29-s + (−5.55 + 9.62i)31-s − 3.37·35-s + 6·37-s + (0.127 − 0.221i)41-s + (2.37 + 4.10i)43-s + (−4.68 − 8.11i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.637 − 1.10i)7-s + (0.357 + 0.619i)11-s + (0.467 − 0.809i)13-s + 1.63·17-s + 0.229·19-s + (0.560 − 0.970i)23-s + (−0.0999 − 0.173i)25-s + (0.220 + 0.381i)29-s + (−0.998 + 1.72i)31-s − 0.570·35-s + 0.986·37-s + (0.0199 − 0.0345i)41-s + (0.361 + 0.626i)43-s + (−0.683 − 1.18i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.875237316\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.875237316\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (1.68 + 2.92i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.18 - 2.05i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.68 + 2.92i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6.74T + 17T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 23 | \( 1 + (-2.68 + 4.65i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.18 - 2.05i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.55 - 9.62i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + (-0.127 + 0.221i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.37 - 4.10i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.68 + 8.11i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 10.1T + 53T^{2} \) |
| 59 | \( 1 + (-2.5 + 4.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.37 + 11.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.372 + 0.644i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.37T + 71T^{2} \) |
| 73 | \( 1 - 14.7T + 73T^{2} \) |
| 79 | \( 1 + (-1.37 - 2.37i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5 + 8.66i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 4.37T + 89T^{2} \) |
| 97 | \( 1 + (-2.37 - 4.10i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.400077895531641708352019145881, −7.74736746467743313249571357043, −6.96814818203086534525728437085, −6.35099772989000685213767813321, −5.35588359540097145314319695253, −4.69608712032358468060580860442, −3.60148448259644478562198771181, −3.11879955324003492350427039399, −1.55121773493558672883958471402, −0.66615072709403905147191067825,
1.18736198595815857656106018395, 2.39379911977339480225420684982, 3.23919982772485728603187505649, 3.93021461278635452995412584924, 5.23706705582916443126165243521, 5.98208856926853479526461508057, 6.26406453239641901429180780728, 7.41014024188427632536959824248, 8.004662167093226283376283803339, 9.112783802350388738412434397114