L(s) = 1 | + (0.5 − 0.866i)5-s + (2 + 3.46i)7-s + (−1 − 1.73i)11-s + (−2 + 3.46i)13-s + 17-s − 5·19-s + (−2.5 + 4.33i)23-s + (−0.499 − 0.866i)25-s + (−4 − 6.92i)29-s + (−3.5 + 6.06i)31-s + 3.99·35-s − 6·37-s + (−3 + 5.19i)41-s + (1 + 1.73i)43-s + (−4 − 6.92i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (0.755 + 1.30i)7-s + (−0.301 − 0.522i)11-s + (−0.554 + 0.960i)13-s + 0.242·17-s − 1.14·19-s + (−0.521 + 0.902i)23-s + (−0.0999 − 0.173i)25-s + (−0.742 − 1.28i)29-s + (−0.628 + 1.08i)31-s + 0.676·35-s − 0.986·37-s + (−0.468 + 0.811i)41-s + (0.152 + 0.264i)43-s + (−0.583 − 1.01i)47-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(−0.939−0.342i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(−0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
−0.939−0.342i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), −0.939−0.342i)
|
Particular Values
L(1) |
≈ |
0.6471400489 |
L(21) |
≈ |
0.6471400489 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(−2−3.46i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2−3.46i)T+(−6.5−11.2i)T2 |
| 17 | 1−T+17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+(2.5−4.33i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4+6.92i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.5−6.06i)T+(−15.5−26.8i)T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+(3−5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1−1.73i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4+6.92i)T+(−23.5+40.7i)T2 |
| 53 | 1−9T+53T2 |
| 59 | 1+(2−3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.5+11.2i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5+8.66i)T+(−33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+(4.5+7.79i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−8.5−14.7i)T+(−41.5+71.8i)T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(−4−6.92i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.904140330653818337165178648858, −8.367117944663208171186397838457, −7.66903149009137062757434750620, −6.63579768194865165219740901249, −5.83065703710561033975219988472, −5.23676594262831427400264063527, −4.51834540101091665565037881762, −3.44867414393349377751825320280, −2.21756807244551354036819310769, −1.73362831597264875195716787381,
0.17931063121907144766927808265, 1.59253611192481790698860195029, 2.53461070912300990198204588456, 3.68260359235524166952283971697, 4.41078073699718774615675132324, 5.20294727933758717150986698979, 6.04419303541784649137779314547, 7.17073448359366060728582154545, 7.36661213231094987205221661183, 8.216014257130467112720472354466