L(s) = 1 | + (0.5 + 0.866i)5-s + (2 − 3.46i)7-s + (−1 + 1.73i)11-s + (−2 − 3.46i)13-s + 17-s − 5·19-s + (−2.5 − 4.33i)23-s + (−0.499 + 0.866i)25-s + (−4 + 6.92i)29-s + (−3.5 − 6.06i)31-s + 3.99·35-s − 6·37-s + (−3 − 5.19i)41-s + (1 − 1.73i)43-s + (−4 + 6.92i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (0.755 − 1.30i)7-s + (−0.301 + 0.522i)11-s + (−0.554 − 0.960i)13-s + 0.242·17-s − 1.14·19-s + (−0.521 − 0.902i)23-s + (−0.0999 + 0.173i)25-s + (−0.742 + 1.28i)29-s + (−0.628 − 1.08i)31-s + 0.676·35-s − 0.986·37-s + (−0.468 − 0.811i)41-s + (0.152 − 0.264i)43-s + (−0.583 + 1.01i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6471400489\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6471400489\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-2 + 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - T + 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + (2.5 + 4.33i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4 - 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.5 + 6.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1 + 1.73i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4 - 6.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.5 - 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5 - 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 + (4.5 - 7.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.5 + 14.7i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (-4 + 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216014257130467112720472354466, −7.36661213231094987205221661183, −7.17073448359366060728582154545, −6.04419303541784649137779314547, −5.20294727933758717150986698979, −4.41078073699718774615675132324, −3.68260359235524166952283971697, −2.53461070912300990198204588456, −1.59253611192481790698860195029, −0.17931063121907144766927808265,
1.73362831597264875195716787381, 2.21756807244551354036819310769, 3.44867414393349377751825320280, 4.51834540101091665565037881762, 5.23676594262831427400264063527, 5.83065703710561033975219988472, 6.63579768194865165219740901249, 7.66903149009137062757434750620, 8.367117944663208171186397838457, 8.904140330653818337165178648858