L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−1 + 1.73i)11-s + (−0.5 − 0.866i)13-s + (0.499 + 0.866i)14-s + (−0.5 + 0.866i)16-s − 19-s + (0.499 − 0.866i)20-s + (0.999 + 1.73i)22-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−1 + 1.73i)11-s + (−0.5 − 0.866i)13-s + (0.499 + 0.866i)14-s + (−0.5 + 0.866i)16-s − 19-s + (0.499 − 0.866i)20-s + (0.999 + 1.73i)22-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.173−0.984i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.173−0.984i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.173−0.984i)
|
Particular Values
L(21) |
≈ |
0.7873538570 |
L(21) |
≈ |
0.7873538570 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1 |
| 5 | 1+(−0.5−0.866i)T |
good | 7 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1+T+T2 |
| 23 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+2T+T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1−T+T2 |
| 59 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1−2T+T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.300241446207699138752368806779, −8.401562012503533660608637083480, −7.38832894674501836911077391259, −6.58574643577698575444650269880, −5.83561951833600399530233948508, −5.13607577752474990027587761519, −4.36600969732535765400587024428, −3.17091040151054590340488845392, −2.45300861189565052257435052963, −2.01363870509096744759729799137,
0.35885198895837900450068662967, 2.15989324418934498254941759176, 3.43739111128036782504130111231, 4.02982758383732957212725432772, 5.06483125179744344767590084824, 5.57494243814410927230452997667, 6.36825306964191468156133545408, 7.05741951983430526880300858984, 7.932854904842347185063128532297, 8.592146186600905207199010545852