L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−1 − 1.73i)11-s + (−0.5 + 0.866i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 19-s + (0.499 + 0.866i)20-s + (0.999 − 1.73i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−1 − 1.73i)11-s + (−0.5 + 0.866i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 19-s + (0.499 + 0.866i)20-s + (0.999 − 1.73i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7873538570\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7873538570\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.592146186600905207199010545852, −7.932854904842347185063128532297, −7.05741951983430526880300858984, −6.36825306964191468156133545408, −5.57494243814410927230452997667, −5.06483125179744344767590084824, −4.02982758383732957212725432772, −3.43739111128036782504130111231, −2.15989324418934498254941759176, −0.35885198895837900450068662967,
2.01363870509096744759729799137, 2.45300861189565052257435052963, 3.17091040151054590340488845392, 4.36600969732535765400587024428, 5.13607577752474990027587761519, 5.83561951833600399530233948508, 6.58574643577698575444650269880, 7.38832894674501836911077391259, 8.401562012503533660608637083480, 9.300241446207699138752368806779