L(s) = 1 | + (−0.604 + 2.25i)2-s + (−2.99 − 1.72i)4-s + (−0.254 + 2.22i)5-s + (−2.19 + 1.48i)7-s + (2.40 − 2.40i)8-s + (−4.85 − 1.91i)10-s + (2.61 + 1.51i)11-s + (−1.77 − 1.77i)13-s + (−2.01 − 5.84i)14-s + (0.512 + 0.888i)16-s + (−3.73 + 1.00i)17-s + (3.79 − 2.19i)19-s + (4.59 − 6.20i)20-s + (−4.98 + 4.98i)22-s + (−7.23 − 1.93i)23-s + ⋯ |
L(s) = 1 | + (−0.427 + 1.59i)2-s + (−1.49 − 0.863i)4-s + (−0.113 + 0.993i)5-s + (−0.828 + 0.559i)7-s + (0.849 − 0.849i)8-s + (−1.53 − 0.606i)10-s + (0.788 + 0.455i)11-s + (−0.492 − 0.492i)13-s + (−0.538 − 1.56i)14-s + (0.128 + 0.222i)16-s + (−0.906 + 0.243i)17-s + (0.871 − 0.503i)19-s + (1.02 − 1.38i)20-s + (−1.06 + 1.06i)22-s + (−1.50 − 0.403i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.538 + 0.842i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.538 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.279742 - 0.510834i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.279742 - 0.510834i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.254 - 2.22i)T \) |
| 7 | \( 1 + (2.19 - 1.48i)T \) |
good | 2 | \( 1 + (0.604 - 2.25i)T + (-1.73 - i)T^{2} \) |
| 11 | \( 1 + (-2.61 - 1.51i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.77 + 1.77i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.73 - 1.00i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.79 + 2.19i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (7.23 + 1.93i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 1.25T + 29T^{2} \) |
| 31 | \( 1 + (2.64 - 4.57i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.36 - 1.97i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 10.7iT - 41T^{2} \) |
| 43 | \( 1 + (-5.73 - 5.73i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.09 - 7.80i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (0.472 + 1.76i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.97 - 5.14i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.71 + 6.42i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.50 - 9.36i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 1.07iT - 71T^{2} \) |
| 73 | \( 1 + (2.07 - 0.555i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (5.75 - 3.31i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.25 - 1.25i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2.44 - 4.22i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.69 + 2.69i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.33201447269047186023086086212, −11.27412616913283735715607503211, −9.884167648907983399945880930100, −9.435406171443605424190770572884, −8.250280838787742003391053202256, −7.32837701764393021379417845020, −6.49895741257655291192568246128, −5.94627831056808104618805718816, −4.47105795975327868620318793930, −2.81534125051070973207152652000,
0.47562382812395107922049132196, 1.99825781338776767612209890369, 3.64176657473352878828391251471, 4.30444705344075687230461182566, 5.96567005852172218268878043169, 7.45514806952822545266683007886, 8.742583275716744798064677010637, 9.421269489079298201450069834036, 10.00836903876978127792242529032, 11.16881195428139344578651542080