L(s) = 1 | + (−0.604 − 2.25i)2-s + (−2.99 + 1.72i)4-s + (−0.254 − 2.22i)5-s + (−2.19 − 1.48i)7-s + (2.40 + 2.40i)8-s + (−4.85 + 1.91i)10-s + (2.61 − 1.51i)11-s + (−1.77 + 1.77i)13-s + (−2.01 + 5.84i)14-s + (0.512 − 0.888i)16-s + (−3.73 − 1.00i)17-s + (3.79 + 2.19i)19-s + (4.59 + 6.20i)20-s + (−4.98 − 4.98i)22-s + (−7.23 + 1.93i)23-s + ⋯ |
L(s) = 1 | + (−0.427 − 1.59i)2-s + (−1.49 + 0.863i)4-s + (−0.113 − 0.993i)5-s + (−0.828 − 0.559i)7-s + (0.849 + 0.849i)8-s + (−1.53 + 0.606i)10-s + (0.788 − 0.455i)11-s + (−0.492 + 0.492i)13-s + (−0.538 + 1.56i)14-s + (0.128 − 0.222i)16-s + (−0.906 − 0.243i)17-s + (0.871 + 0.503i)19-s + (1.02 + 1.38i)20-s + (−1.06 − 1.06i)22-s + (−1.50 + 0.403i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.538 - 0.842i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.538 - 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.279742 + 0.510834i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.279742 + 0.510834i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.254 + 2.22i)T \) |
| 7 | \( 1 + (2.19 + 1.48i)T \) |
good | 2 | \( 1 + (0.604 + 2.25i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (-2.61 + 1.51i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.77 - 1.77i)T - 13iT^{2} \) |
| 17 | \( 1 + (3.73 + 1.00i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.79 - 2.19i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (7.23 - 1.93i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 1.25T + 29T^{2} \) |
| 31 | \( 1 + (2.64 + 4.57i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.36 + 1.97i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 10.7iT - 41T^{2} \) |
| 43 | \( 1 + (-5.73 + 5.73i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.09 + 7.80i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (0.472 - 1.76i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.97 + 5.14i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.71 - 6.42i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.50 + 9.36i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 1.07iT - 71T^{2} \) |
| 73 | \( 1 + (2.07 + 0.555i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (5.75 + 3.31i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.25 + 1.25i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.44 + 4.22i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.69 - 2.69i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16881195428139344578651542080, −10.00836903876978127792242529032, −9.421269489079298201450069834036, −8.742583275716744798064677010637, −7.45514806952822545266683007886, −5.96567005852172218268878043169, −4.30444705344075687230461182566, −3.64176657473352878828391251471, −1.99825781338776767612209890369, −0.47562382812395107922049132196,
2.81534125051070973207152652000, 4.47105795975327868620318793930, 5.94627831056808104618805718816, 6.49895741257655291192568246128, 7.32837701764393021379417845020, 8.250280838787742003391053202256, 9.435406171443605424190770572884, 9.884167648907983399945880930100, 11.27412616913283735715607503211, 12.33201447269047186023086086212