| L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 + 0.5i)3-s + (−0.866 − 0.499i)4-s + (0.707 − 0.707i)5-s + (−0.258 − 0.965i)6-s + (1.36 − 0.366i)7-s + (0.707 − 0.707i)8-s + (0.499 − 0.866i)9-s + (0.500 + 0.866i)10-s + (0.965 + 0.258i)11-s + 12-s − 13-s + 1.41i·14-s + (−0.258 + 0.965i)15-s + (0.500 + 0.866i)16-s + ⋯ |
| L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 + 0.5i)3-s + (−0.866 − 0.499i)4-s + (0.707 − 0.707i)5-s + (−0.258 − 0.965i)6-s + (1.36 − 0.366i)7-s + (0.707 − 0.707i)8-s + (0.499 − 0.866i)9-s + (0.500 + 0.866i)10-s + (0.965 + 0.258i)11-s + 12-s − 13-s + 1.41i·14-s + (−0.258 + 0.965i)15-s + (0.500 + 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 - 0.416i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 - 0.416i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.017750908\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.017750908\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + T \) |
| good | 7 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.105811523339530861513624025520, −8.157992024653544899942173736277, −7.31436690880026576386221590575, −6.65577052429856375802304064373, −5.78145280313983482639941401962, −5.12979130611906606961249875881, −4.59500990989726006774843083386, −4.01845438392333121378937289381, −1.90153826898612531152155393771, −0.893620945450583998486857209975,
1.35019809637097131371702078187, 1.93456459813039635676141710918, 2.90064673021697350532017591670, 4.17544784555076747853787742254, 5.05864090013959070908974549027, 5.56245378869241209403181477647, 6.60744125522638552511875287068, 7.40313511105713006476650913581, 8.059850448100512562881715679303, 8.973207206722663419329458286124