Properties

Label 3120.1667
Modulus $3120$
Conductor $3120$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,9,6,3,4]))
 
Copy content pari:[g,chi] = znchar(Mod(1667,3120))
 

Basic properties

Modulus: \(3120\)
Conductor: \(3120\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3120.iq

\(\chi_{3120}(1667,\cdot)\) \(\chi_{3120}(1907,\cdot)\) \(\chi_{3120}(2603,\cdot)\) \(\chi_{3120}(2843,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.9976868377454444544000000000.2

Values on generators

\((1951,2341,2081,2497,2641)\) → \((-1,-i,-1,i,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3120 }(1667, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3120 }(1667,a) \;\) at \(\;a = \) e.g. 2