L(s) = 1 | + (2.82 − 0.121i)2-s − 3i·3-s + (7.97 − 0.689i)4-s − 14.7·5-s + (−0.365 − 8.47i)6-s + 28.6i·7-s + (22.4 − 2.92i)8-s − 9·9-s + (−41.7 + 1.80i)10-s + 55.0·11-s + (−2.06 − 23.9i)12-s + (21.7 + 41.5i)13-s + (3.49 + 80.8i)14-s + 44.2i·15-s + (63.0 − 10.9i)16-s − 111.·17-s + ⋯ |
L(s) = 1 | + (0.999 − 0.0431i)2-s − 0.577i·3-s + (0.996 − 0.0861i)4-s − 1.32·5-s + (−0.0249 − 0.576i)6-s + 1.54i·7-s + (0.991 − 0.129i)8-s − 0.333·9-s + (−1.31 + 0.0569i)10-s + 1.50·11-s + (−0.0497 − 0.575i)12-s + (0.464 + 0.885i)13-s + (0.0666 + 1.54i)14-s + 0.762i·15-s + (0.985 − 0.171i)16-s − 1.59·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.818−0.575i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.818−0.575i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.818−0.575i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.818−0.575i)
|
Particular Values
L(2) |
≈ |
2.957803395 |
L(21) |
≈ |
2.957803395 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.82+0.121i)T |
| 3 | 1+3iT |
| 13 | 1+(−21.7−41.5i)T |
good | 5 | 1+14.7T+125T2 |
| 7 | 1−28.6iT−343T2 |
| 11 | 1−55.0T+1.33e3T2 |
| 17 | 1+111.T+4.91e3T2 |
| 19 | 1−80.7T+6.85e3T2 |
| 23 | 1−137.T+1.21e4T2 |
| 29 | 1−147.iT−2.43e4T2 |
| 31 | 1−231.iT−2.97e4T2 |
| 37 | 1−86.8T+5.06e4T2 |
| 41 | 1+122.iT−6.89e4T2 |
| 43 | 1−136.iT−7.95e4T2 |
| 47 | 1+554.iT−1.03e5T2 |
| 53 | 1−124.iT−1.48e5T2 |
| 59 | 1+348.T+2.05e5T2 |
| 61 | 1+674.iT−2.26e5T2 |
| 67 | 1−156.T+3.00e5T2 |
| 71 | 1−1.14e3iT−3.57e5T2 |
| 73 | 1−775.iT−3.89e5T2 |
| 79 | 1+1.10e3T+4.93e5T2 |
| 83 | 1−446.T+5.71e5T2 |
| 89 | 1+843.iT−7.04e5T2 |
| 97 | 1−321.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55013949967701236281307856799, −11.19433134933597363475093280746, −9.101008227696795335688279127965, −8.531471923722006204066045759329, −7.02839901553140804072349803785, −6.59596005595822683883414155148, −5.25674155549496594302466176381, −4.10993911520610966720390384016, −3.01001824948246569112926020085, −1.56560533328119244801805246904,
0.861003205208538235224899855911, 3.24724963548181546815028043988, 4.09043565697459941337668268552, 4.53944991532120110279580670462, 6.23707066789787127468021050578, 7.21451711726308701151950641840, 7.953487777313275460239050215246, 9.359497574696749723270164680620, 10.71900468418610321456709980313, 11.22557699103257324893258901608