L(s) = 1 | + (2.82 + 0.121i)2-s + 3i·3-s + (7.97 + 0.689i)4-s − 14.7·5-s + (−0.365 + 8.47i)6-s − 28.6i·7-s + (22.4 + 2.92i)8-s − 9·9-s + (−41.7 − 1.80i)10-s + 55.0·11-s + (−2.06 + 23.9i)12-s + (21.7 − 41.5i)13-s + (3.49 − 80.8i)14-s − 44.2i·15-s + (63.0 + 10.9i)16-s − 111.·17-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0431i)2-s + 0.577i·3-s + (0.996 + 0.0861i)4-s − 1.32·5-s + (−0.0249 + 0.576i)6-s − 1.54i·7-s + (0.991 + 0.129i)8-s − 0.333·9-s + (−1.31 − 0.0569i)10-s + 1.50·11-s + (−0.0497 + 0.575i)12-s + (0.464 − 0.885i)13-s + (0.0666 − 1.54i)14-s − 0.762i·15-s + (0.985 + 0.171i)16-s − 1.59·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.818 + 0.575i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.818 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.957803395\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.957803395\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.82 - 0.121i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (-21.7 + 41.5i)T \) |
good | 5 | \( 1 + 14.7T + 125T^{2} \) |
| 7 | \( 1 + 28.6iT - 343T^{2} \) |
| 11 | \( 1 - 55.0T + 1.33e3T^{2} \) |
| 17 | \( 1 + 111.T + 4.91e3T^{2} \) |
| 19 | \( 1 - 80.7T + 6.85e3T^{2} \) |
| 23 | \( 1 - 137.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 147. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 231. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 86.8T + 5.06e4T^{2} \) |
| 41 | \( 1 - 122. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 136. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 554. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 124. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 348.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 674. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 156.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 1.14e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 775. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.10e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 446.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 843. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 321. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22557699103257324893258901608, −10.71900468418610321456709980313, −9.359497574696749723270164680620, −7.953487777313275460239050215246, −7.21451711726308701151950641840, −6.23707066789787127468021050578, −4.53944991532120110279580670462, −4.09043565697459941337668268552, −3.24724963548181546815028043988, −0.861003205208538235224899855911,
1.56560533328119244801805246904, 3.01001824948246569112926020085, 4.10993911520610966720390384016, 5.25674155549496594302466176381, 6.59596005595822683883414155148, 7.02839901553140804072349803785, 8.531471923722006204066045759329, 9.101008227696795335688279127965, 11.19433134933597363475093280746, 11.55013949967701236281307856799