L(s) = 1 | + (−2.47 − 1.37i)2-s − 3i·3-s + (4.22 + 6.79i)4-s − 19.0·5-s + (−4.11 + 7.41i)6-s + 2.83i·7-s + (−1.13 − 22.5i)8-s − 9·9-s + (47.0 + 26.1i)10-s − 28.0·11-s + (20.3 − 12.6i)12-s + (−43.7 − 16.8i)13-s + (3.88 − 7.00i)14-s + 57.1i·15-s + (−28.2 + 57.4i)16-s − 86.5·17-s + ⋯ |
L(s) = 1 | + (−0.874 − 0.485i)2-s − 0.577i·3-s + (0.528 + 0.848i)4-s − 1.70·5-s + (−0.280 + 0.504i)6-s + 0.152i·7-s + (−0.0500 − 0.998i)8-s − 0.333·9-s + (1.48 + 0.826i)10-s − 0.769·11-s + (0.490 − 0.305i)12-s + (−0.932 − 0.359i)13-s + (0.0742 − 0.133i)14-s + 0.983i·15-s + (−0.441 + 0.897i)16-s − 1.23·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.949+0.312i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.949+0.312i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.949+0.312i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.949+0.312i)
|
Particular Values
L(2) |
≈ |
0.4543935193 |
L(21) |
≈ |
0.4543935193 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.47+1.37i)T |
| 3 | 1+3iT |
| 13 | 1+(43.7+16.8i)T |
good | 5 | 1+19.0T+125T2 |
| 7 | 1−2.83iT−343T2 |
| 11 | 1+28.0T+1.33e3T2 |
| 17 | 1+86.5T+4.91e3T2 |
| 19 | 1−82.3T+6.85e3T2 |
| 23 | 1−81.3T+1.21e4T2 |
| 29 | 1−70.2iT−2.43e4T2 |
| 31 | 1−184.iT−2.97e4T2 |
| 37 | 1+62.8T+5.06e4T2 |
| 41 | 1+405.iT−6.89e4T2 |
| 43 | 1+257.iT−7.95e4T2 |
| 47 | 1−200.iT−1.03e5T2 |
| 53 | 1−121.iT−1.48e5T2 |
| 59 | 1−513.T+2.05e5T2 |
| 61 | 1−54.0iT−2.26e5T2 |
| 67 | 1−438.T+3.00e5T2 |
| 71 | 1+181.iT−3.57e5T2 |
| 73 | 1+922.iT−3.89e5T2 |
| 79 | 1−158.T+4.93e5T2 |
| 83 | 1−324.T+5.71e5T2 |
| 89 | 1−990.iT−7.04e5T2 |
| 97 | 1−1.57e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15644847177377622120344243000, −10.53315690557968710730775270464, −9.081477955479122869362563738324, −8.328150178324247334644113117409, −7.40531482702291046983105524131, −7.01603065182728898890187761166, −5.01502258383827764468976900378, −3.57628785435341489485905052726, −2.49920983894444725647533911904, −0.62025494560991079958149125553,
0.41139479749537998394453127304, 2.72586054016691957485573958994, 4.27137747027636784071014119426, 5.18942918397386235296000839859, 6.81411218702690322558261216671, 7.60938292071686077230033248190, 8.326093203131992460041724513451, 9.339849943199741063970762510381, 10.26294596001922415300393272690, 11.39951980176477108833604768396