L(s) = 1 | + (−2.47 + 1.37i)2-s + 3i·3-s + (4.22 − 6.79i)4-s − 19.0·5-s + (−4.11 − 7.41i)6-s − 2.83i·7-s + (−1.13 + 22.5i)8-s − 9·9-s + (47.0 − 26.1i)10-s − 28.0·11-s + (20.3 + 12.6i)12-s + (−43.7 + 16.8i)13-s + (3.88 + 7.00i)14-s − 57.1i·15-s + (−28.2 − 57.4i)16-s − 86.5·17-s + ⋯ |
L(s) = 1 | + (−0.874 + 0.485i)2-s + 0.577i·3-s + (0.528 − 0.848i)4-s − 1.70·5-s + (−0.280 − 0.504i)6-s − 0.152i·7-s + (−0.0500 + 0.998i)8-s − 0.333·9-s + (1.48 − 0.826i)10-s − 0.769·11-s + (0.490 + 0.305i)12-s + (−0.932 + 0.359i)13-s + (0.0742 + 0.133i)14-s − 0.983i·15-s + (−0.441 − 0.897i)16-s − 1.23·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 - 0.312i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.949 - 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4543935193\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4543935193\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.47 - 1.37i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (43.7 - 16.8i)T \) |
good | 5 | \( 1 + 19.0T + 125T^{2} \) |
| 7 | \( 1 + 2.83iT - 343T^{2} \) |
| 11 | \( 1 + 28.0T + 1.33e3T^{2} \) |
| 17 | \( 1 + 86.5T + 4.91e3T^{2} \) |
| 19 | \( 1 - 82.3T + 6.85e3T^{2} \) |
| 23 | \( 1 - 81.3T + 1.21e4T^{2} \) |
| 29 | \( 1 + 70.2iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 184. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 62.8T + 5.06e4T^{2} \) |
| 41 | \( 1 - 405. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 257. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 200. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 121. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 513.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 54.0iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 438.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 181. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 922. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 158.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 324.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 990. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.57e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39951980176477108833604768396, −10.26294596001922415300393272690, −9.339849943199741063970762510381, −8.326093203131992460041724513451, −7.60938292071686077230033248190, −6.81411218702690322558261216671, −5.18942918397386235296000839859, −4.27137747027636784071014119426, −2.72586054016691957485573958994, −0.41139479749537998394453127304,
0.62025494560991079958149125553, 2.49920983894444725647533911904, 3.57628785435341489485905052726, 5.01502258383827764468976900378, 7.01603065182728898890187761166, 7.40531482702291046983105524131, 8.328150178324247334644113117409, 9.081477955479122869362563738324, 10.53315690557968710730775270464, 11.15644847177377622120344243000