L(s) = 1 | + (−0.481 − 2.78i)2-s − 3i·3-s + (−7.53 + 2.68i)4-s − 21.7·5-s + (−8.36 + 1.44i)6-s − 13.0i·7-s + (11.1 + 19.7i)8-s − 9·9-s + (10.4 + 60.5i)10-s − 21.2·11-s + (8.05 + 22.6i)12-s + (29.0 + 36.7i)13-s + (−36.3 + 6.28i)14-s + 65.1i·15-s + (49.5 − 40.4i)16-s − 41.3·17-s + ⋯ |
L(s) = 1 | + (−0.170 − 0.985i)2-s − 0.577i·3-s + (−0.942 + 0.335i)4-s − 1.94·5-s + (−0.568 + 0.0983i)6-s − 0.704i·7-s + (0.491 + 0.871i)8-s − 0.333·9-s + (0.330 + 1.91i)10-s − 0.583·11-s + (0.193 + 0.543i)12-s + (0.619 + 0.784i)13-s + (−0.694 + 0.120i)14-s + 1.12i·15-s + (0.774 − 0.632i)16-s − 0.589·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.925+0.379i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.925+0.379i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.925+0.379i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.925+0.379i)
|
Particular Values
L(2) |
≈ |
0.4397022981 |
L(21) |
≈ |
0.4397022981 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.481+2.78i)T |
| 3 | 1+3iT |
| 13 | 1+(−29.0−36.7i)T |
good | 5 | 1+21.7T+125T2 |
| 7 | 1+13.0iT−343T2 |
| 11 | 1+21.2T+1.33e3T2 |
| 17 | 1+41.3T+4.91e3T2 |
| 19 | 1+147.T+6.85e3T2 |
| 23 | 1−58.4T+1.21e4T2 |
| 29 | 1+180.iT−2.43e4T2 |
| 31 | 1+272.iT−2.97e4T2 |
| 37 | 1−337.T+5.06e4T2 |
| 41 | 1−118.iT−6.89e4T2 |
| 43 | 1−404.iT−7.95e4T2 |
| 47 | 1+145.iT−1.03e5T2 |
| 53 | 1−409.iT−1.48e5T2 |
| 59 | 1+809.T+2.05e5T2 |
| 61 | 1+34.5iT−2.26e5T2 |
| 67 | 1−750.T+3.00e5T2 |
| 71 | 1−455.iT−3.57e5T2 |
| 73 | 1−130.iT−3.89e5T2 |
| 79 | 1−108.T+4.93e5T2 |
| 83 | 1−201.T+5.71e5T2 |
| 89 | 1−1.26e3iT−7.04e5T2 |
| 97 | 1−1.42e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15334159485919115073263781517, −10.80723493082111981672845883509, −9.243485806986345309994501448607, −8.139768796318296277833415584427, −7.78683524682816828646249687568, −6.51728792368300507648040453162, −4.40423290589202957271020454453, −4.04236740160421471182801446546, −2.56556471827586503618069264899, −0.77145219759340355305041916036,
0.27351847978852472634049637569, 3.26428858097622082011614204305, 4.32516821699397004564654807688, 5.18976501687228516183380951464, 6.53143272936544919251780707498, 7.59758717778727223125400866878, 8.591403941141846203212703619887, 8.769502497267360231764709093122, 10.55367393163664547798018459353, 11.00734510654454756854399269380