L(s) = 1 | + (−0.481 + 2.78i)2-s + 3i·3-s + (−7.53 − 2.68i)4-s − 21.7·5-s + (−8.36 − 1.44i)6-s + 13.0i·7-s + (11.1 − 19.7i)8-s − 9·9-s + (10.4 − 60.5i)10-s − 21.2·11-s + (8.05 − 22.6i)12-s + (29.0 − 36.7i)13-s + (−36.3 − 6.28i)14-s − 65.1i·15-s + (49.5 + 40.4i)16-s − 41.3·17-s + ⋯ |
L(s) = 1 | + (−0.170 + 0.985i)2-s + 0.577i·3-s + (−0.942 − 0.335i)4-s − 1.94·5-s + (−0.568 − 0.0983i)6-s + 0.704i·7-s + (0.491 − 0.871i)8-s − 0.333·9-s + (0.330 − 1.91i)10-s − 0.583·11-s + (0.193 − 0.543i)12-s + (0.619 − 0.784i)13-s + (−0.694 − 0.120i)14-s − 1.12i·15-s + (0.774 + 0.632i)16-s − 0.589·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.379i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.925 - 0.379i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4397022981\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4397022981\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.481 - 2.78i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (-29.0 + 36.7i)T \) |
good | 5 | \( 1 + 21.7T + 125T^{2} \) |
| 7 | \( 1 - 13.0iT - 343T^{2} \) |
| 11 | \( 1 + 21.2T + 1.33e3T^{2} \) |
| 17 | \( 1 + 41.3T + 4.91e3T^{2} \) |
| 19 | \( 1 + 147.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 58.4T + 1.21e4T^{2} \) |
| 29 | \( 1 - 180. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 272. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 337.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 118. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 404. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 145. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 409. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 809.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 34.5iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 750.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 455. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 130. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 108.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 201.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.26e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.42e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00734510654454756854399269380, −10.55367393163664547798018459353, −8.769502497267360231764709093122, −8.591403941141846203212703619887, −7.59758717778727223125400866878, −6.53143272936544919251780707498, −5.18976501687228516183380951464, −4.32516821699397004564654807688, −3.26428858097622082011614204305, −0.27351847978852472634049637569,
0.77145219759340355305041916036, 2.56556471827586503618069264899, 4.04236740160421471182801446546, 4.40423290589202957271020454453, 6.51728792368300507648040453162, 7.78683524682816828646249687568, 8.139768796318296277833415584427, 9.243485806986345309994501448607, 10.80723493082111981672845883509, 11.15334159485919115073263781517