| L(s) = 1 | + (2.95 − 2.14i)2-s + (−2.80 + 3.86i)3-s + (2.87 − 8.85i)4-s − 3.94·5-s + 17.4i·6-s + (−0.932 + 2.87i)7-s + (−5.98 − 18.4i)8-s + (−4.27 − 13.1i)9-s + (−11.6 + 8.45i)10-s + (10.9 + 3.54i)11-s + (26.1 + 35.9i)12-s + (4.53 − 6.23i)13-s + (3.40 + 10.4i)14-s + (11.0 − 15.2i)15-s + (−27.0 − 19.6i)16-s + (−15.6 + 5.07i)17-s + ⋯ |
| L(s) = 1 | + (1.47 − 1.07i)2-s + (−0.936 + 1.28i)3-s + (0.719 − 2.21i)4-s − 0.788·5-s + 2.90i·6-s + (−0.133 + 0.410i)7-s + (−0.748 − 2.30i)8-s + (−0.474 − 1.46i)9-s + (−1.16 + 0.845i)10-s + (0.991 + 0.322i)11-s + (2.17 + 2.99i)12-s + (0.348 − 0.479i)13-s + (0.243 + 0.748i)14-s + (0.738 − 1.01i)15-s + (−1.69 − 1.22i)16-s + (−0.919 + 0.298i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.823 + 0.566i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.823 + 0.566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.35806 - 0.422100i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.35806 - 0.422100i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 31 | \( 1 + (-18.2 - 25.0i)T \) |
| good | 2 | \( 1 + (-2.95 + 2.14i)T + (1.23 - 3.80i)T^{2} \) |
| 3 | \( 1 + (2.80 - 3.86i)T + (-2.78 - 8.55i)T^{2} \) |
| 5 | \( 1 + 3.94T + 25T^{2} \) |
| 7 | \( 1 + (0.932 - 2.87i)T + (-39.6 - 28.8i)T^{2} \) |
| 11 | \( 1 + (-10.9 - 3.54i)T + (97.8 + 71.1i)T^{2} \) |
| 13 | \( 1 + (-4.53 + 6.23i)T + (-52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (15.6 - 5.07i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-15.7 + 11.4i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + (23.9 - 7.77i)T + (427. - 310. i)T^{2} \) |
| 29 | \( 1 + (-9.12 - 12.5i)T + (-259. + 799. i)T^{2} \) |
| 37 | \( 1 + 48.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (1.26 - 0.920i)T + (519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + (-33.5 - 46.1i)T + (-571. + 1.75e3i)T^{2} \) |
| 47 | \( 1 + (24.4 + 17.7i)T + (682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (51.0 - 16.5i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (54.4 + 39.5i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + 56.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 87.2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (19.9 + 61.2i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (14.3 + 4.67i)T + (4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (67.5 - 21.9i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-42.2 - 58.1i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 + (-28.3 - 9.19i)T + (6.40e3 + 4.65e3i)T^{2} \) |
| 97 | \( 1 + (-35.5 + 109. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.85406834383283327851893007835, −15.47646294187353217239298061511, −14.16693000024108963030716002684, −12.46515100080643533524126631326, −11.59244144268793183549673663196, −10.86002094548166857315742554628, −9.535752077288405591508338008023, −6.10948838855341509016305248287, −4.72441767353195887927812679403, −3.66966013509481701516777548136,
4.14105537570582838457094359978, 6.02281235007070968721562403662, 6.88567498915409293368706813781, 7.985332976971839303835356808636, 11.62407200475651824683455437808, 11.98894659252871578768783374902, 13.35789901553840194369778593023, 14.08474720259771948467720332691, 15.67259393930370316972690547898, 16.60993005198089145090575025478