Properties

Label 31.3.f.a.15.5
Level $31$
Weight $3$
Character 31.15
Analytic conductor $0.845$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,3,Mod(15,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.15"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 31.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.844688819517\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 20 x^{18} - 33 x^{17} + 250 x^{16} - 510 x^{15} + 2908 x^{14} - 6447 x^{13} + \cdots + 731025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 15.5
Root \(-1.12738 - 3.46973i\) of defining polynomial
Character \(\chi\) \(=\) 31.15
Dual form 31.3.f.a.29.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.95153 - 2.14441i) q^{2} +(-2.80836 + 3.86537i) q^{3} +(2.87696 - 8.85438i) q^{4} -3.94423 q^{5} +17.4310i q^{6} +(-0.932951 + 2.87133i) q^{7} +(-5.98647 - 18.4245i) q^{8} +(-4.27307 - 13.1512i) q^{9} +(-11.6415 + 8.45807i) q^{10} +(10.9110 + 3.54519i) q^{11} +(26.1459 + 35.9868i) q^{12} +(4.53298 - 6.23912i) q^{13} +(3.40368 + 10.4755i) q^{14} +(11.0768 - 15.2459i) q^{15} +(-27.0510 - 19.6537i) q^{16} +(-15.6245 + 5.07671i) q^{17} +(-40.8136 - 29.6528i) q^{18} +(15.7996 - 11.4790i) q^{19} +(-11.3474 + 34.9238i) q^{20} +(-8.47869 - 11.6699i) q^{21} +(39.8064 - 12.9339i) q^{22} +(-23.9267 + 7.77425i) q^{23} +(88.0295 + 28.6025i) q^{24} -9.44302 q^{25} -28.1355i q^{26} +(21.9382 + 7.12816i) q^{27} +(22.7398 + 16.5214i) q^{28} +(9.12892 + 12.5649i) q^{29} -68.7521i q^{30} +(18.2893 + 25.0300i) q^{31} -44.4969 q^{32} +(-44.3454 + 32.2188i) q^{33} +(-35.2297 + 48.4895i) q^{34} +(3.67978 - 11.3252i) q^{35} -128.739 q^{36} -48.5373i q^{37} +(22.0171 - 67.7615i) q^{38} +(11.3863 + 35.0433i) q^{39} +(23.6120 + 72.6704i) q^{40} +(-1.26683 + 0.920402i) q^{41} +(-50.0502 - 16.2623i) q^{42} +(33.5466 + 46.1730i) q^{43} +(62.7810 - 86.4106i) q^{44} +(16.8540 + 51.8712i) q^{45} +(-53.9492 + 74.2547i) q^{46} +(-24.4619 - 17.7726i) q^{47} +(151.937 - 49.3674i) q^{48} +(32.2677 + 23.4439i) q^{49} +(-27.8714 + 20.2497i) q^{50} +(24.2558 - 74.6517i) q^{51} +(-42.2023 - 58.0865i) q^{52} +(-51.0737 + 16.5949i) q^{53} +(80.0371 - 26.0056i) q^{54} +(-43.0354 - 13.9831i) q^{55} +58.4878 q^{56} +93.3083i q^{57} +(53.8886 + 17.5095i) q^{58} +(-54.4113 - 39.5321i) q^{59} +(-103.126 - 141.940i) q^{60} -56.2711i q^{61} +(107.656 + 34.6571i) q^{62} +41.7479 q^{63} +(-23.1301 + 16.8050i) q^{64} +(-17.8791 + 24.6085i) q^{65} +(-61.7963 + 190.190i) q^{66} +87.2989 q^{67} +152.951i q^{68} +(37.1443 - 114.318i) q^{69} +(-13.4249 - 41.3176i) q^{70} +(-19.9102 - 61.2774i) q^{71} +(-216.722 + 157.458i) q^{72} +(-14.3964 - 4.67769i) q^{73} +(-104.084 - 143.259i) q^{74} +(26.5193 - 36.5007i) q^{75} +(-56.1851 - 172.920i) q^{76} +(-20.3588 + 28.0215i) q^{77} +(108.754 + 79.0146i) q^{78} +(-67.5006 + 21.9323i) q^{79} +(106.695 + 77.5187i) q^{80} +(11.5200 - 8.36981i) q^{81} +(-1.76535 + 5.43319i) q^{82} +(42.2812 + 58.1951i) q^{83} +(-127.723 + 41.4996i) q^{84} +(61.6267 - 20.0237i) q^{85} +(198.028 + 64.3432i) q^{86} -74.2052 q^{87} -222.252i q^{88} +(28.3122 + 9.19918i) q^{89} +(160.978 + 116.958i) q^{90} +(13.6855 + 18.8365i) q^{91} +234.222i q^{92} +(-148.113 + 0.401655i) q^{93} -110.312 q^{94} +(-62.3171 + 45.2760i) q^{95} +(124.963 - 171.997i) q^{96} +(35.5472 - 109.403i) q^{97} +145.512 q^{98} -158.641i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} - 5 q^{3} - 11 q^{4} - 14 q^{5} - q^{7} - 19 q^{8} + 2 q^{9} + 12 q^{10} - 10 q^{11} + 90 q^{12} + 10 q^{13} - 85 q^{15} - 103 q^{16} + 35 q^{17} + 6 q^{18} + 47 q^{19} - 125 q^{20} - 125 q^{21}+ \cdots - 1000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.95153 2.14441i 1.47577 1.07221i 0.496875 0.867822i \(-0.334481\pi\)
0.978891 0.204385i \(-0.0655194\pi\)
\(3\) −2.80836 + 3.86537i −0.936118 + 1.28846i 0.0213062 + 0.999773i \(0.493218\pi\)
−0.957425 + 0.288683i \(0.906782\pi\)
\(4\) 2.87696 8.85438i 0.719241 2.21360i
\(5\) −3.94423 −0.788847 −0.394423 0.918929i \(-0.629056\pi\)
−0.394423 + 0.918929i \(0.629056\pi\)
\(6\) 17.4310i 2.90517i
\(7\) −0.932951 + 2.87133i −0.133279 + 0.410190i −0.995318 0.0966511i \(-0.969187\pi\)
0.862040 + 0.506841i \(0.169187\pi\)
\(8\) −5.98647 18.4245i −0.748309 2.30306i
\(9\) −4.27307 13.1512i −0.474785 1.46124i
\(10\) −11.6415 + 8.45807i −1.16415 + 0.845807i
\(11\) 10.9110 + 3.54519i 0.991907 + 0.322290i 0.759627 0.650359i \(-0.225382\pi\)
0.232280 + 0.972649i \(0.425382\pi\)
\(12\) 26.1459 + 35.9868i 2.17883 + 2.99890i
\(13\) 4.53298 6.23912i 0.348691 0.479932i −0.598264 0.801299i \(-0.704142\pi\)
0.946955 + 0.321367i \(0.104142\pi\)
\(14\) 3.40368 + 10.4755i 0.243120 + 0.748247i
\(15\) 11.0768 15.2459i 0.738454 1.01639i
\(16\) −27.0510 19.6537i −1.69068 1.22835i
\(17\) −15.6245 + 5.07671i −0.919089 + 0.298630i −0.730093 0.683348i \(-0.760523\pi\)
−0.188996 + 0.981978i \(0.560523\pi\)
\(18\) −40.8136 29.6528i −2.26742 1.64738i
\(19\) 15.7996 11.4790i 0.831555 0.604160i −0.0884436 0.996081i \(-0.528189\pi\)
0.919999 + 0.391921i \(0.128189\pi\)
\(20\) −11.3474 + 34.9238i −0.567371 + 1.74619i
\(21\) −8.47869 11.6699i −0.403747 0.555710i
\(22\) 39.8064 12.9339i 1.80938 0.587904i
\(23\) −23.9267 + 7.77425i −1.04029 + 0.338011i −0.778851 0.627209i \(-0.784197\pi\)
−0.261440 + 0.965220i \(0.584197\pi\)
\(24\) 88.0295 + 28.6025i 3.66789 + 1.19177i
\(25\) −9.44302 −0.377721
\(26\) 28.1355i 1.08214i
\(27\) 21.9382 + 7.12816i 0.812527 + 0.264006i
\(28\) 22.7398 + 16.5214i 0.812135 + 0.590051i
\(29\) 9.12892 + 12.5649i 0.314790 + 0.433272i 0.936868 0.349684i \(-0.113711\pi\)
−0.622077 + 0.782956i \(0.713711\pi\)
\(30\) 68.7521i 2.29174i
\(31\) 18.2893 + 25.0300i 0.589977 + 0.807420i
\(32\) −44.4969 −1.39053
\(33\) −44.3454 + 32.2188i −1.34380 + 0.976327i
\(34\) −35.2297 + 48.4895i −1.03617 + 1.42616i
\(35\) 3.67978 11.3252i 0.105137 0.323577i
\(36\) −128.739 −3.57608
\(37\) 48.5373i 1.31182i −0.754840 0.655909i \(-0.772285\pi\)
0.754840 0.655909i \(-0.227715\pi\)
\(38\) 22.0171 67.7615i 0.579396 1.78320i
\(39\) 11.3863 + 35.0433i 0.291955 + 0.898546i
\(40\) 23.6120 + 72.6704i 0.590301 + 1.81676i
\(41\) −1.26683 + 0.920402i −0.0308982 + 0.0224488i −0.603127 0.797645i \(-0.706079\pi\)
0.572229 + 0.820094i \(0.306079\pi\)
\(42\) −50.0502 16.2623i −1.19167 0.387198i
\(43\) 33.5466 + 46.1730i 0.780155 + 1.07379i 0.995265 + 0.0972010i \(0.0309890\pi\)
−0.215110 + 0.976590i \(0.569011\pi\)
\(44\) 62.7810 86.4106i 1.42684 1.96388i
\(45\) 16.8540 + 51.8712i 0.374533 + 1.15269i
\(46\) −53.9492 + 74.2547i −1.17281 + 1.61423i
\(47\) −24.4619 17.7726i −0.520466 0.378141i 0.296313 0.955091i \(-0.404243\pi\)
−0.816779 + 0.576950i \(0.804243\pi\)
\(48\) 151.937 49.3674i 3.16536 1.02849i
\(49\) 32.2677 + 23.4439i 0.658524 + 0.478446i
\(50\) −27.8714 + 20.2497i −0.557427 + 0.404995i
\(51\) 24.2558 74.6517i 0.475604 1.46376i
\(52\) −42.2023 58.0865i −0.811583 1.11705i
\(53\) −51.0737 + 16.5949i −0.963655 + 0.313111i −0.748252 0.663415i \(-0.769107\pi\)
−0.215403 + 0.976525i \(0.569107\pi\)
\(54\) 80.0371 26.0056i 1.48217 0.481586i
\(55\) −43.0354 13.9831i −0.782463 0.254238i
\(56\) 58.4878 1.04442
\(57\) 93.3083i 1.63699i
\(58\) 53.8886 + 17.5095i 0.929114 + 0.301887i
\(59\) −54.4113 39.5321i −0.922225 0.670035i 0.0218521 0.999761i \(-0.493044\pi\)
−0.944077 + 0.329726i \(0.893044\pi\)
\(60\) −103.126 141.940i −1.71876 2.36567i
\(61\) 56.2711i 0.922477i −0.887276 0.461239i \(-0.847405\pi\)
0.887276 0.461239i \(-0.152595\pi\)
\(62\) 107.656 + 34.6571i 1.73639 + 0.558986i
\(63\) 41.7479 0.662664
\(64\) −23.1301 + 16.8050i −0.361408 + 0.262578i
\(65\) −17.8791 + 24.6085i −0.275064 + 0.378593i
\(66\) −61.7963 + 190.190i −0.936308 + 2.88166i
\(67\) 87.2989 1.30297 0.651484 0.758662i \(-0.274147\pi\)
0.651484 + 0.758662i \(0.274147\pi\)
\(68\) 152.951i 2.24928i
\(69\) 37.1443 114.318i 0.538323 1.65679i
\(70\) −13.4249 41.3176i −0.191785 0.590252i
\(71\) −19.9102 61.2774i −0.280426 0.863061i −0.987733 0.156155i \(-0.950090\pi\)
0.707307 0.706907i \(-0.249910\pi\)
\(72\) −216.722 + 157.458i −3.01003 + 2.18692i
\(73\) −14.3964 4.67769i −0.197212 0.0640779i 0.208746 0.977970i \(-0.433062\pi\)
−0.405957 + 0.913892i \(0.633062\pi\)
\(74\) −104.084 143.259i −1.40654 1.93594i
\(75\) 26.5193 36.5007i 0.353591 0.486677i
\(76\) −56.1851 172.920i −0.739278 2.27526i
\(77\) −20.3588 + 28.0215i −0.264400 + 0.363916i
\(78\) 108.754 + 79.0146i 1.39429 + 1.01301i
\(79\) −67.5006 + 21.9323i −0.854438 + 0.277624i −0.703304 0.710890i \(-0.748293\pi\)
−0.151134 + 0.988513i \(0.548293\pi\)
\(80\) 106.695 + 77.5187i 1.33369 + 0.968984i
\(81\) 11.5200 8.36981i 0.142223 0.103331i
\(82\) −1.76535 + 5.43319i −0.0215287 + 0.0662585i
\(83\) 42.2812 + 58.1951i 0.509412 + 0.701145i 0.983820 0.179160i \(-0.0573379\pi\)
−0.474408 + 0.880305i \(0.657338\pi\)
\(84\) −127.723 + 41.4996i −1.52051 + 0.494043i
\(85\) 61.6267 20.0237i 0.725021 0.235573i
\(86\) 198.028 + 64.3432i 2.30265 + 0.748177i
\(87\) −74.2052 −0.852933
\(88\) 222.252i 2.52559i
\(89\) 28.3122 + 9.19918i 0.318114 + 0.103362i 0.463722 0.885981i \(-0.346514\pi\)
−0.145608 + 0.989342i \(0.546514\pi\)
\(90\) 160.978 + 116.958i 1.78865 + 1.29953i
\(91\) 13.6855 + 18.8365i 0.150390 + 0.206994i
\(92\) 234.222i 2.54590i
\(93\) −148.113 + 0.401655i −1.59261 + 0.00431888i
\(94\) −110.312 −1.17353
\(95\) −62.3171 + 45.2760i −0.655970 + 0.476590i
\(96\) 124.963 171.997i 1.30170 1.79163i
\(97\) 35.5472 109.403i 0.366466 1.12787i −0.582592 0.812765i \(-0.697961\pi\)
0.949058 0.315102i \(-0.102039\pi\)
\(98\) 145.512 1.48482
\(99\) 158.641i 1.60243i
\(100\) −27.1672 + 83.6121i −0.271672 + 0.836121i
\(101\) −31.7093 97.5911i −0.313953 0.966249i −0.976183 0.216948i \(-0.930390\pi\)
0.662230 0.749301i \(-0.269610\pi\)
\(102\) −88.4923 272.351i −0.867572 2.67011i
\(103\) −72.7309 + 52.8421i −0.706125 + 0.513030i −0.881921 0.471397i \(-0.843750\pi\)
0.175796 + 0.984427i \(0.443750\pi\)
\(104\) −142.089 46.1675i −1.36624 0.443918i
\(105\) 33.4419 + 46.0289i 0.318495 + 0.438370i
\(106\) −115.159 + 158.503i −1.08641 + 1.49532i
\(107\) 41.8782 + 128.888i 0.391385 + 1.20456i 0.931741 + 0.363122i \(0.118289\pi\)
−0.540357 + 0.841436i \(0.681711\pi\)
\(108\) 126.231 173.742i 1.16880 1.60872i
\(109\) 48.9202 + 35.5426i 0.448809 + 0.326079i 0.789125 0.614232i \(-0.210534\pi\)
−0.340316 + 0.940311i \(0.610534\pi\)
\(110\) −157.006 + 51.0143i −1.42733 + 0.463767i
\(111\) 187.615 + 136.310i 1.69022 + 1.22802i
\(112\) 81.6694 59.3363i 0.729191 0.529788i
\(113\) −4.24023 + 13.0501i −0.0375242 + 0.115487i −0.968064 0.250703i \(-0.919338\pi\)
0.930540 + 0.366191i \(0.119338\pi\)
\(114\) 200.092 + 275.403i 1.75519 + 2.41581i
\(115\) 94.3725 30.6635i 0.820630 0.266639i
\(116\) 137.518 44.6823i 1.18550 0.385192i
\(117\) −101.421 32.9538i −0.866849 0.281656i
\(118\) −245.370 −2.07940
\(119\) 49.5995i 0.416802i
\(120\) −347.209 112.815i −2.89341 0.940125i
\(121\) 8.58994 + 6.24096i 0.0709913 + 0.0515782i
\(122\) −120.669 166.086i −0.989086 1.36136i
\(123\) 7.48156i 0.0608257i
\(124\) 274.243 89.9299i 2.21164 0.725241i
\(125\) 135.851 1.08681
\(126\) 123.220 89.5247i 0.977937 0.710513i
\(127\) 15.7518 21.6805i 0.124030 0.170713i −0.742487 0.669861i \(-0.766354\pi\)
0.866517 + 0.499148i \(0.166354\pi\)
\(128\) 22.7688 70.0752i 0.177881 0.547462i
\(129\) −272.687 −2.11385
\(130\) 110.973i 0.853640i
\(131\) −75.6209 + 232.737i −0.577259 + 1.77662i 0.0510979 + 0.998694i \(0.483728\pi\)
−0.628356 + 0.777926i \(0.716272\pi\)
\(132\) 157.698 + 485.343i 1.19468 + 3.67684i
\(133\) 18.2199 + 56.0751i 0.136992 + 0.421617i
\(134\) 257.665 187.205i 1.92288 1.39705i
\(135\) −86.5295 28.1151i −0.640959 0.208260i
\(136\) 187.071 + 257.482i 1.37552 + 1.89325i
\(137\) −47.6994 + 65.6526i −0.348171 + 0.479216i −0.946806 0.321806i \(-0.895710\pi\)
0.598635 + 0.801022i \(0.295710\pi\)
\(138\) −135.513 417.067i −0.981980 3.02222i
\(139\) −62.2830 + 85.7252i −0.448079 + 0.616728i −0.971984 0.235049i \(-0.924475\pi\)
0.523904 + 0.851777i \(0.324475\pi\)
\(140\) −89.6910 65.1644i −0.640650 0.465460i
\(141\) 137.395 44.6425i 0.974435 0.316613i
\(142\) −190.170 138.166i −1.33922 0.973002i
\(143\) 71.5781 52.0046i 0.500546 0.363668i
\(144\) −142.878 + 439.733i −0.992207 + 3.05370i
\(145\) −36.0066 49.5588i −0.248321 0.341785i
\(146\) −52.5225 + 17.0656i −0.359743 + 0.116888i
\(147\) −181.238 + 58.8879i −1.23291 + 0.400598i
\(148\) −429.768 139.640i −2.90384 0.943514i
\(149\) 241.145 1.61842 0.809210 0.587519i \(-0.199895\pi\)
0.809210 + 0.587519i \(0.199895\pi\)
\(150\) 164.602i 1.09734i
\(151\) −16.2020 5.26435i −0.107298 0.0348633i 0.254876 0.966974i \(-0.417965\pi\)
−0.362174 + 0.932111i \(0.617965\pi\)
\(152\) −306.079 222.379i −2.01368 1.46302i
\(153\) 133.529 + 183.787i 0.872740 + 1.20122i
\(154\) 126.364i 0.820546i
\(155\) −72.1372 98.7243i −0.465402 0.636931i
\(156\) 343.045 2.19900
\(157\) −54.7192 + 39.7558i −0.348530 + 0.253222i −0.748252 0.663415i \(-0.769107\pi\)
0.399722 + 0.916636i \(0.369107\pi\)
\(158\) −152.198 + 209.483i −0.963280 + 1.32584i
\(159\) 79.2879 244.023i 0.498666 1.53474i
\(160\) 175.506 1.09691
\(161\) 75.9544i 0.471767i
\(162\) 16.0535 49.4075i 0.0990955 0.304985i
\(163\) 17.3607 + 53.4307i 0.106507 + 0.327795i 0.990081 0.140496i \(-0.0448697\pi\)
−0.883574 + 0.468291i \(0.844870\pi\)
\(164\) 4.50498 + 13.8649i 0.0274694 + 0.0845422i
\(165\) 174.909 127.078i 1.06005 0.770173i
\(166\) 249.589 + 81.0962i 1.50355 + 0.488531i
\(167\) −42.0141 57.8274i −0.251581 0.346272i 0.664483 0.747303i \(-0.268652\pi\)
−0.916064 + 0.401031i \(0.868652\pi\)
\(168\) −164.254 + 226.077i −0.977705 + 1.34570i
\(169\) 33.8452 + 104.165i 0.200268 + 0.616360i
\(170\) 138.954 191.254i 0.817377 1.12502i
\(171\) −218.475 158.732i −1.27763 0.928255i
\(172\) 505.346 164.197i 2.93806 0.954633i
\(173\) 155.826 + 113.214i 0.900726 + 0.654416i 0.938652 0.344865i \(-0.112075\pi\)
−0.0379265 + 0.999281i \(0.512075\pi\)
\(174\) −219.019 + 159.127i −1.25873 + 0.914520i
\(175\) 8.80988 27.1140i 0.0503421 0.154937i
\(176\) −225.476 310.341i −1.28112 1.76330i
\(177\) 305.612 99.2994i 1.72662 0.561014i
\(178\) 103.291 33.5613i 0.580287 0.188547i
\(179\) −110.448 35.8868i −0.617029 0.200485i −0.0162084 0.999869i \(-0.505160\pi\)
−0.600821 + 0.799384i \(0.705160\pi\)
\(180\) 507.776 2.82098
\(181\) 244.619i 1.35149i −0.737137 0.675743i \(-0.763823\pi\)
0.737137 0.675743i \(-0.236177\pi\)
\(182\) 80.7864 + 26.2491i 0.443881 + 0.144226i
\(183\) 217.509 + 158.029i 1.18857 + 0.863548i
\(184\) 286.473 + 394.296i 1.55692 + 2.14291i
\(185\) 191.442i 1.03482i
\(186\) −436.299 + 318.801i −2.34569 + 1.71398i
\(187\) −188.477 −1.00790
\(188\) −227.741 + 165.464i −1.21139 + 0.880127i
\(189\) −40.9346 + 56.3416i −0.216585 + 0.298104i
\(190\) −86.8404 + 267.267i −0.457055 + 1.40667i
\(191\) −131.778 −0.689939 −0.344969 0.938614i \(-0.612111\pi\)
−0.344969 + 0.938614i \(0.612111\pi\)
\(192\) 136.601i 0.711462i
\(193\) 12.7631 39.2808i 0.0661301 0.203527i −0.912531 0.409007i \(-0.865875\pi\)
0.978661 + 0.205479i \(0.0658753\pi\)
\(194\) −129.687 399.135i −0.668488 2.05740i
\(195\) −44.9101 138.219i −0.230308 0.708816i
\(196\) 300.414 218.263i 1.53272 1.11359i
\(197\) −248.751 80.8240i −1.26269 0.410274i −0.400240 0.916410i \(-0.631073\pi\)
−0.862453 + 0.506136i \(0.831073\pi\)
\(198\) −340.191 468.233i −1.71814 2.36481i
\(199\) 9.07689 12.4933i 0.0456125 0.0627802i −0.785602 0.618733i \(-0.787646\pi\)
0.831214 + 0.555953i \(0.187646\pi\)
\(200\) 56.5303 + 173.982i 0.282652 + 0.869912i
\(201\) −245.166 + 337.442i −1.21973 + 1.67882i
\(202\) −302.867 220.045i −1.49934 1.08933i
\(203\) −44.5948 + 14.4897i −0.219679 + 0.0713779i
\(204\) −591.212 429.541i −2.89810 2.10559i
\(205\) 4.99665 3.63028i 0.0243739 0.0177087i
\(206\) −101.352 + 311.930i −0.492001 + 1.51422i
\(207\) 204.481 + 281.444i 0.987830 + 1.35963i
\(208\) −245.243 + 79.6843i −1.17905 + 0.383098i
\(209\) 213.084 69.2352i 1.01954 0.331269i
\(210\) 197.410 + 64.1424i 0.940047 + 0.305440i
\(211\) −406.514 −1.92661 −0.963304 0.268413i \(-0.913501\pi\)
−0.963304 + 0.268413i \(0.913501\pi\)
\(212\) 499.969i 2.35835i
\(213\) 292.775 + 95.1282i 1.37453 + 0.446611i
\(214\) 399.993 + 290.612i 1.86913 + 1.35800i
\(215\) −132.316 182.117i −0.615423 0.847056i
\(216\) 446.872i 2.06885i
\(217\) −88.9325 + 29.1628i −0.409827 + 0.134391i
\(218\) 220.608 1.01196
\(219\) 58.5113 42.5110i 0.267175 0.194114i
\(220\) −247.623 + 340.824i −1.12556 + 1.54920i
\(221\) −39.1515 + 120.496i −0.177156 + 0.545230i
\(222\) 846.055 3.81106
\(223\) 53.9778i 0.242053i 0.992649 + 0.121027i \(0.0386186\pi\)
−0.992649 + 0.121027i \(0.961381\pi\)
\(224\) 41.5134 127.765i 0.185328 0.570380i
\(225\) 40.3506 + 124.187i 0.179336 + 0.551940i
\(226\) 15.4696 + 47.6105i 0.0684496 + 0.210666i
\(227\) 138.386 100.544i 0.609631 0.442923i −0.239653 0.970859i \(-0.577034\pi\)
0.849284 + 0.527936i \(0.177034\pi\)
\(228\) 826.188 + 268.445i 3.62363 + 1.17739i
\(229\) −48.0594 66.1481i −0.209867 0.288857i 0.691087 0.722771i \(-0.257132\pi\)
−0.900954 + 0.433915i \(0.857132\pi\)
\(230\) 212.788 292.878i 0.925166 1.27338i
\(231\) −51.1387 157.389i −0.221380 0.681336i
\(232\) 176.851 243.415i 0.762289 1.04920i
\(233\) −87.8907 63.8563i −0.377213 0.274061i 0.382983 0.923756i \(-0.374897\pi\)
−0.760196 + 0.649694i \(0.774897\pi\)
\(234\) −370.015 + 120.225i −1.58126 + 0.513782i
\(235\) 96.4835 + 70.0993i 0.410568 + 0.298295i
\(236\) −506.571 + 368.046i −2.14649 + 1.55952i
\(237\) 104.789 322.508i 0.442149 1.36079i
\(238\) −106.362 146.394i −0.446898 0.615102i
\(239\) 206.536 67.1078i 0.864169 0.280786i 0.156800 0.987630i \(-0.449882\pi\)
0.707369 + 0.706845i \(0.249882\pi\)
\(240\) −599.277 + 194.717i −2.49699 + 0.811320i
\(241\) −50.6814 16.4674i −0.210296 0.0683294i 0.201974 0.979391i \(-0.435264\pi\)
−0.412271 + 0.911061i \(0.635264\pi\)
\(242\) 38.7367 0.160069
\(243\) 275.640i 1.13432i
\(244\) −498.246 161.890i −2.04199 0.663483i
\(245\) −127.271 92.4681i −0.519475 0.377421i
\(246\) −16.0436 22.0821i −0.0652177 0.0897645i
\(247\) 150.610i 0.609755i
\(248\) 351.676 486.812i 1.41805 1.96295i
\(249\) −343.686 −1.38026
\(250\) 400.970 291.321i 1.60388 1.16529i
\(251\) 247.733 340.976i 0.986985 1.35847i 0.0540055 0.998541i \(-0.482801\pi\)
0.932980 0.359928i \(-0.117199\pi\)
\(252\) 120.107 369.651i 0.476615 1.46687i
\(253\) −288.625 −1.14081
\(254\) 97.7692i 0.384918i
\(255\) −95.6706 + 294.444i −0.375179 + 1.15468i
\(256\) −118.407 364.419i −0.462527 1.42351i
\(257\) 90.0443 + 277.128i 0.350367 + 1.07832i 0.958648 + 0.284596i \(0.0918595\pi\)
−0.608281 + 0.793722i \(0.708141\pi\)
\(258\) −804.843 + 584.753i −3.11955 + 2.26648i
\(259\) 139.367 + 45.2829i 0.538095 + 0.174838i
\(260\) 166.456 + 229.107i 0.640214 + 0.881180i
\(261\) 126.234 173.746i 0.483656 0.665695i
\(262\) 275.887 + 849.093i 1.05300 + 3.24081i
\(263\) 18.2574 25.1291i 0.0694197 0.0955480i −0.772895 0.634534i \(-0.781192\pi\)
0.842315 + 0.538986i \(0.181192\pi\)
\(264\) 859.086 + 624.162i 3.25411 + 2.36425i
\(265\) 201.447 65.4540i 0.760176 0.246996i
\(266\) 174.025 + 126.436i 0.654229 + 0.475325i
\(267\) −115.069 + 83.6024i −0.430969 + 0.313118i
\(268\) 251.156 772.978i 0.937148 2.88425i
\(269\) 71.6026 + 98.5525i 0.266181 + 0.366366i 0.921096 0.389336i \(-0.127296\pi\)
−0.654915 + 0.755703i \(0.727296\pi\)
\(270\) −315.685 + 102.572i −1.16920 + 0.379897i
\(271\) −94.4952 + 30.7034i −0.348691 + 0.113297i −0.478126 0.878291i \(-0.658684\pi\)
0.129435 + 0.991588i \(0.458684\pi\)
\(272\) 522.434 + 169.749i 1.92071 + 0.624078i
\(273\) −111.244 −0.407486
\(274\) 296.063i 1.08052i
\(275\) −103.033 33.4773i −0.374664 0.121736i
\(276\) −905.356 657.780i −3.28027 2.38326i
\(277\) −245.522 337.932i −0.886360 1.21997i −0.974618 0.223872i \(-0.928130\pi\)
0.0882585 0.996098i \(-0.471870\pi\)
\(278\) 386.581i 1.39058i
\(279\) 251.022 347.480i 0.899721 1.24545i
\(280\) −230.689 −0.823891
\(281\) 41.6719 30.2764i 0.148298 0.107745i −0.511162 0.859484i \(-0.670785\pi\)
0.659460 + 0.751739i \(0.270785\pi\)
\(282\) 309.795 426.396i 1.09856 1.51204i
\(283\) 54.0307 166.290i 0.190921 0.587596i −0.809079 0.587700i \(-0.800033\pi\)
1.00000 0.000104866i \(3.33797e-5\pi\)
\(284\) −599.854 −2.11216
\(285\) 368.030i 1.29133i
\(286\) 99.7459 306.986i 0.348762 1.07338i
\(287\) −1.46089 4.49616i −0.00509022 0.0156661i
\(288\) 190.138 + 585.185i 0.660202 + 2.03189i
\(289\) −15.4535 + 11.2276i −0.0534723 + 0.0388499i
\(290\) −212.549 69.0614i −0.732929 0.238143i
\(291\) 323.054 + 444.646i 1.11015 + 1.52799i
\(292\) −82.8361 + 114.014i −0.283685 + 0.390459i
\(293\) −11.1393 34.2833i −0.0380181 0.117008i 0.930246 0.366936i \(-0.119593\pi\)
−0.968264 + 0.249928i \(0.919593\pi\)
\(294\) −408.651 + 562.459i −1.38997 + 1.91313i
\(295\) 214.611 + 155.924i 0.727494 + 0.528555i
\(296\) −894.273 + 290.567i −3.02119 + 0.981645i
\(297\) 214.097 + 155.550i 0.720864 + 0.523739i
\(298\) 711.746 517.114i 2.38841 1.73528i
\(299\) −59.9548 + 184.522i −0.200518 + 0.617130i
\(300\) −246.896 339.824i −0.822988 1.13275i
\(301\) −163.875 + 53.2463i −0.544436 + 0.176898i
\(302\) −59.1097 + 19.2059i −0.195727 + 0.0635957i
\(303\) 466.277 + 151.502i 1.53887 + 0.500008i
\(304\) −652.998 −2.14802
\(305\) 221.946i 0.727693i
\(306\) 788.231 + 256.112i 2.57592 + 0.836967i
\(307\) 80.2732 + 58.3219i 0.261476 + 0.189974i 0.710798 0.703397i \(-0.248334\pi\)
−0.449321 + 0.893370i \(0.648334\pi\)
\(308\) 189.542 + 260.882i 0.615395 + 0.847018i
\(309\) 429.531i 1.39007i
\(310\) −424.621 136.696i −1.36975 0.440954i
\(311\) 428.987 1.37938 0.689689 0.724106i \(-0.257747\pi\)
0.689689 + 0.724106i \(0.257747\pi\)
\(312\) 577.490 419.571i 1.85093 1.34478i
\(313\) −124.931 + 171.952i −0.399139 + 0.549368i −0.960528 0.278185i \(-0.910267\pi\)
0.561389 + 0.827552i \(0.310267\pi\)
\(314\) −76.2525 + 234.681i −0.242842 + 0.747392i
\(315\) −164.663 −0.522741
\(316\) 660.774i 2.09106i
\(317\) 49.1333 151.217i 0.154995 0.477025i −0.843166 0.537654i \(-0.819311\pi\)
0.998160 + 0.0606293i \(0.0193107\pi\)
\(318\) −289.266 890.268i −0.909640 2.79958i
\(319\) 55.0605 + 169.459i 0.172604 + 0.531219i
\(320\) 91.2305 66.2829i 0.285095 0.207134i
\(321\) −615.807 200.088i −1.91840 0.623327i
\(322\) −162.878 224.182i −0.505831 0.696217i
\(323\) −188.584 + 259.564i −0.583853 + 0.803605i
\(324\) −40.9667 126.083i −0.126440 0.389144i
\(325\) −42.8050 + 58.9161i −0.131708 + 0.181280i
\(326\) 165.818 + 120.474i 0.508644 + 0.369552i
\(327\) −274.771 + 89.2783i −0.840277 + 0.273022i
\(328\) 24.5417 + 17.8306i 0.0748223 + 0.0543616i
\(329\) 73.8528 53.6572i 0.224477 0.163092i
\(330\) 243.739 750.152i 0.738604 2.27319i
\(331\) 277.937 + 382.548i 0.839689 + 1.15573i 0.986041 + 0.166501i \(0.0532467\pi\)
−0.146352 + 0.989233i \(0.546753\pi\)
\(332\) 636.923 206.949i 1.91844 0.623340i
\(333\) −638.321 + 207.403i −1.91688 + 0.622832i
\(334\) −248.012 80.5839i −0.742550 0.241269i
\(335\) −344.327 −1.02784
\(336\) 482.320i 1.43548i
\(337\) 271.877 + 88.3383i 0.806758 + 0.262132i 0.683224 0.730209i \(-0.260577\pi\)
0.123534 + 0.992340i \(0.460577\pi\)
\(338\) 323.268 + 234.868i 0.956414 + 0.694875i
\(339\) −38.5353 53.0393i −0.113674 0.156458i
\(340\) 603.274i 1.77434i
\(341\) 110.818 + 337.941i 0.324979 + 0.991029i
\(342\) −985.223 −2.88077
\(343\) −217.102 + 157.734i −0.632949 + 0.459865i
\(344\) 649.887 894.492i 1.88921 2.60027i
\(345\) −146.506 + 450.898i −0.424654 + 1.30695i
\(346\) 702.702 2.03093
\(347\) 226.797i 0.653593i −0.945095 0.326797i \(-0.894031\pi\)
0.945095 0.326797i \(-0.105969\pi\)
\(348\) −213.486 + 657.041i −0.613464 + 1.88805i
\(349\) 198.443 + 610.746i 0.568605 + 1.74999i 0.656989 + 0.753901i \(0.271830\pi\)
−0.0883832 + 0.996087i \(0.528170\pi\)
\(350\) −32.1410 98.9199i −0.0918315 0.282628i
\(351\) 143.919 104.563i 0.410026 0.297901i
\(352\) −485.504 157.750i −1.37927 0.448153i
\(353\) −349.013 480.375i −0.988706 1.36084i −0.932005 0.362445i \(-0.881942\pi\)
−0.0567007 0.998391i \(-0.518058\pi\)
\(354\) 689.085 948.445i 1.94657 2.67922i
\(355\) 78.5306 + 241.692i 0.221213 + 0.680823i
\(356\) 162.906 224.221i 0.457601 0.629834i
\(357\) 191.720 + 139.293i 0.537031 + 0.390176i
\(358\) −402.948 + 130.926i −1.12555 + 0.365714i
\(359\) −255.375 185.541i −0.711350 0.516826i 0.172259 0.985052i \(-0.444893\pi\)
−0.883609 + 0.468225i \(0.844893\pi\)
\(360\) 854.803 621.051i 2.37445 1.72514i
\(361\) 6.30218 19.3961i 0.0174576 0.0537289i
\(362\) −524.564 722.001i −1.44907 1.99448i
\(363\) −48.2472 + 15.6765i −0.132912 + 0.0431859i
\(364\) 206.158 66.9848i 0.566368 0.184024i
\(365\) 56.7830 + 18.4499i 0.155570 + 0.0505477i
\(366\) 980.864 2.67996
\(367\) 442.468i 1.20564i −0.797879 0.602818i \(-0.794044\pi\)
0.797879 0.602818i \(-0.205956\pi\)
\(368\) 800.033 + 259.946i 2.17400 + 0.706376i
\(369\) 17.5176 + 12.7273i 0.0474731 + 0.0344912i
\(370\) 410.532 + 565.049i 1.10955 + 1.52716i
\(371\) 162.132i 0.437013i
\(372\) −422.560 + 1312.61i −1.13591 + 3.52851i
\(373\) 462.727 1.24056 0.620278 0.784382i \(-0.287020\pi\)
0.620278 + 0.784382i \(0.287020\pi\)
\(374\) −556.295 + 404.172i −1.48742 + 1.08067i
\(375\) −381.519 + 525.116i −1.01738 + 1.40031i
\(376\) −181.010 + 557.092i −0.481410 + 1.48163i
\(377\) 119.775 0.317706
\(378\) 254.075i 0.672156i
\(379\) 120.173 369.854i 0.317079 0.975868i −0.657812 0.753182i \(-0.728518\pi\)
0.974890 0.222685i \(-0.0714823\pi\)
\(380\) 221.607 + 682.037i 0.583177 + 1.79483i
\(381\) 39.5665 + 121.773i 0.103849 + 0.319615i
\(382\) −388.948 + 282.587i −1.01819 + 0.739757i
\(383\) 263.127 + 85.4952i 0.687016 + 0.223225i 0.631665 0.775242i \(-0.282372\pi\)
0.0553517 + 0.998467i \(0.482372\pi\)
\(384\) 206.923 + 284.806i 0.538863 + 0.741682i
\(385\) 80.3000 110.523i 0.208571 0.287074i
\(386\) −46.5636 143.308i −0.120631 0.371264i
\(387\) 463.881 638.477i 1.19866 1.64981i
\(388\) −866.429 629.497i −2.23306 1.62242i
\(389\) −142.990 + 46.4603i −0.367584 + 0.119435i −0.486984 0.873411i \(-0.661903\pi\)
0.119400 + 0.992846i \(0.461903\pi\)
\(390\) −428.952 311.652i −1.09988 0.799108i
\(391\) 334.375 242.938i 0.855180 0.621324i
\(392\) 238.771 734.861i 0.609109 1.87464i
\(393\) −687.245 945.911i −1.74871 2.40690i
\(394\) −907.515 + 294.870i −2.30334 + 0.748400i
\(395\) 266.238 86.5060i 0.674020 0.219003i
\(396\) −1404.67 456.404i −3.54714 1.15253i
\(397\) 324.296 0.816868 0.408434 0.912788i \(-0.366075\pi\)
0.408434 + 0.912788i \(0.366075\pi\)
\(398\) 56.3389i 0.141555i
\(399\) −267.919 87.0522i −0.671476 0.218176i
\(400\) 255.443 + 185.590i 0.638606 + 0.463975i
\(401\) 195.364 + 268.895i 0.487191 + 0.670561i 0.979867 0.199652i \(-0.0639811\pi\)
−0.492676 + 0.870213i \(0.663981\pi\)
\(402\) 1521.71i 3.78535i
\(403\) 239.070 0.648314i 0.593226 0.00160872i
\(404\) −955.335 −2.36469
\(405\) −45.4378 + 33.0125i −0.112192 + 0.0815123i
\(406\) −100.551 + 138.396i −0.247662 + 0.340878i
\(407\) 172.074 529.589i 0.422786 1.30120i
\(408\) −1520.62 −3.72702
\(409\) 589.034i 1.44018i 0.693881 + 0.720090i \(0.255899\pi\)
−0.693881 + 0.720090i \(0.744101\pi\)
\(410\) 6.96296 21.4298i 0.0169828 0.0522678i
\(411\) −119.815 368.751i −0.291520 0.897205i
\(412\) 258.640 + 796.012i 0.627767 + 1.93207i
\(413\) 164.273 119.351i 0.397755 0.288986i
\(414\) 1207.06 + 392.199i 2.91561 + 0.947339i
\(415\) −166.767 229.535i −0.401848 0.553096i
\(416\) −201.704 + 277.621i −0.484864 + 0.667359i
\(417\) −156.447 481.494i −0.375172 1.15466i
\(418\) 480.455 661.290i 1.14941 1.58203i
\(419\) 210.846 + 153.189i 0.503213 + 0.365606i 0.810243 0.586094i \(-0.199335\pi\)
−0.307030 + 0.951700i \(0.599335\pi\)
\(420\) 503.769 163.684i 1.19945 0.389725i
\(421\) −535.789 389.274i −1.27266 0.924640i −0.273353 0.961914i \(-0.588133\pi\)
−0.999305 + 0.0372732i \(0.988133\pi\)
\(422\) −1199.84 + 871.735i −2.84322 + 2.06572i
\(423\) −129.203 + 397.646i −0.305444 + 0.940061i
\(424\) 611.503 + 841.661i 1.44222 + 1.98505i
\(425\) 147.543 47.9395i 0.347159 0.112799i
\(426\) 1068.13 347.056i 2.50734 0.814685i
\(427\) 161.573 + 52.4982i 0.378391 + 0.122947i
\(428\) 1261.70 2.94791
\(429\) 422.723i 0.985369i
\(430\) −781.069 253.785i −1.81644 0.590197i
\(431\) −428.333 311.202i −0.993811 0.722046i −0.0330589 0.999453i \(-0.510525\pi\)
−0.960752 + 0.277407i \(0.910525\pi\)
\(432\) −453.355 623.990i −1.04943 1.44442i
\(433\) 665.728i 1.53748i −0.639562 0.768739i \(-0.720884\pi\)
0.639562 0.768739i \(-0.279116\pi\)
\(434\) −199.950 + 276.783i −0.460714 + 0.637748i
\(435\) 292.683 0.672833
\(436\) 455.449 330.903i 1.04461 0.758953i
\(437\) −288.790 + 397.485i −0.660847 + 0.909577i
\(438\) 81.5370 250.945i 0.186157 0.572934i
\(439\) −239.143 −0.544744 −0.272372 0.962192i \(-0.587808\pi\)
−0.272372 + 0.962192i \(0.587808\pi\)
\(440\) 876.614i 1.99230i
\(441\) 170.432 524.535i 0.386466 1.18942i
\(442\) 142.836 + 439.604i 0.323158 + 0.994580i
\(443\) −106.758 328.568i −0.240989 0.741689i −0.996270 0.0862880i \(-0.972499\pi\)
0.755281 0.655401i \(-0.227501\pi\)
\(444\) 1746.70 1269.05i 3.93401 2.85823i
\(445\) −111.670 36.2837i −0.250943 0.0815364i
\(446\) 115.751 + 159.317i 0.259531 + 0.357214i
\(447\) −677.220 + 932.113i −1.51503 + 2.08526i
\(448\) −26.6734 82.0924i −0.0595389 0.183242i
\(449\) −201.847 + 277.818i −0.449548 + 0.618749i −0.972300 0.233735i \(-0.924905\pi\)
0.522753 + 0.852484i \(0.324905\pi\)
\(450\) 385.403 + 280.012i 0.856452 + 0.622249i
\(451\) −17.0853 + 5.55135i −0.0378831 + 0.0123090i
\(452\) 103.351 + 75.0892i 0.228654 + 0.166127i
\(453\) 65.8497 47.8426i 0.145363 0.105613i
\(454\) 192.845 593.515i 0.424768 1.30730i
\(455\) −53.9788 74.2955i −0.118635 0.163287i
\(456\) 1719.16 558.587i 3.77008 1.22497i
\(457\) 297.115 96.5385i 0.650142 0.211244i 0.0346651 0.999399i \(-0.488964\pi\)
0.615477 + 0.788155i \(0.288964\pi\)
\(458\) −283.698 92.1790i −0.619428 0.201264i
\(459\) −378.962 −0.825624
\(460\) 923.828i 2.00832i
\(461\) −85.2734 27.7070i −0.184975 0.0601020i 0.215065 0.976600i \(-0.431004\pi\)
−0.400040 + 0.916498i \(0.631004\pi\)
\(462\) −488.444 354.875i −1.05724 0.768128i
\(463\) 414.277 + 570.203i 0.894766 + 1.23154i 0.972108 + 0.234535i \(0.0753568\pi\)
−0.0773416 + 0.997005i \(0.524643\pi\)
\(464\) 519.309i 1.11920i
\(465\) 584.193 1.58422i 1.25633 0.00340693i
\(466\) −396.346 −0.850529
\(467\) 231.578 168.251i 0.495883 0.360280i −0.311559 0.950227i \(-0.600851\pi\)
0.807442 + 0.589946i \(0.200851\pi\)
\(468\) −583.571 + 803.216i −1.24695 + 1.71627i
\(469\) −81.4456 + 250.664i −0.173658 + 0.534464i
\(470\) 435.096 0.925736
\(471\) 323.158i 0.686111i
\(472\) −402.626 + 1239.16i −0.853021 + 2.62533i
\(473\) 202.335 + 622.722i 0.427769 + 1.31654i
\(474\) −382.302 1176.60i −0.806545 2.48229i
\(475\) −149.195 + 108.397i −0.314096 + 0.228204i
\(476\) −439.173 142.696i −0.922631 0.299781i
\(477\) 436.483 + 600.767i 0.915059 + 1.25947i
\(478\) 465.692 640.970i 0.974251 1.34094i
\(479\) −85.8720 264.287i −0.179274 0.551747i 0.820529 0.571604i \(-0.193679\pi\)
−0.999803 + 0.0198573i \(0.993679\pi\)
\(480\) −492.883 + 678.396i −1.02684 + 1.41332i
\(481\) −302.830 220.019i −0.629584 0.457420i
\(482\) −184.901 + 60.0779i −0.383611 + 0.124643i
\(483\) 293.592 + 213.307i 0.607851 + 0.441629i
\(484\) 79.9728 58.1036i 0.165233 0.120049i
\(485\) −140.207 + 431.511i −0.289086 + 0.889714i
\(486\) 591.085 + 813.559i 1.21622 + 1.67399i
\(487\) −414.210 + 134.585i −0.850534 + 0.276355i −0.701670 0.712502i \(-0.747562\pi\)
−0.148864 + 0.988858i \(0.547562\pi\)
\(488\) −1036.76 + 336.865i −2.12452 + 0.690298i
\(489\) −255.284 82.9468i −0.522053 0.169625i
\(490\) −573.935 −1.17130
\(491\) 132.740i 0.270345i 0.990822 + 0.135173i \(0.0431589\pi\)
−0.990822 + 0.135173i \(0.956841\pi\)
\(492\) −66.2446 21.5242i −0.134644 0.0437483i
\(493\) −206.423 149.975i −0.418708 0.304209i
\(494\) −322.969 444.529i −0.653784 0.899856i
\(495\) 625.716i 1.26407i
\(496\) −2.81090 1036.54i −0.00566713 2.08979i
\(497\) 194.523 0.391394
\(498\) −1014.40 + 737.005i −2.03695 + 1.47993i
\(499\) 568.136 781.972i 1.13855 1.56708i 0.367841 0.929889i \(-0.380097\pi\)
0.770707 0.637189i \(-0.219903\pi\)
\(500\) 390.839 1202.88i 0.781679 2.40576i
\(501\) 341.515 0.681666
\(502\) 1537.64i 3.06303i
\(503\) 8.40933 25.8813i 0.0167184 0.0514538i −0.942349 0.334631i \(-0.891388\pi\)
0.959068 + 0.283177i \(0.0913884\pi\)
\(504\) −249.922 769.182i −0.495877 1.52615i
\(505\) 125.069 + 384.922i 0.247661 + 0.762222i
\(506\) −851.885 + 618.931i −1.68357 + 1.22318i
\(507\) −497.685 161.708i −0.981628 0.318950i
\(508\) −146.650 201.847i −0.288682 0.397336i
\(509\) −186.528 + 256.733i −0.366459 + 0.504387i −0.951934 0.306303i \(-0.900908\pi\)
0.585475 + 0.810690i \(0.300908\pi\)
\(510\) 349.035 + 1074.22i 0.684381 + 2.10631i
\(511\) 26.8624 36.9729i 0.0525682 0.0723540i
\(512\) −892.509 648.446i −1.74318 1.26650i
\(513\) 428.439 139.208i 0.835163 0.271361i
\(514\) 860.045 + 624.859i 1.67324 + 1.21568i
\(515\) 286.868 208.422i 0.557025 0.404702i
\(516\) −784.509 + 2414.47i −1.52037 + 4.67921i
\(517\) −203.896 280.639i −0.394383 0.542821i
\(518\) 508.450 165.206i 0.981564 0.318930i
\(519\) −875.227 + 284.379i −1.68637 + 0.547935i
\(520\) 560.432 + 182.095i 1.07775 + 0.350183i
\(521\) 265.075 0.508782 0.254391 0.967102i \(-0.418125\pi\)
0.254391 + 0.967102i \(0.418125\pi\)
\(522\) 783.516i 1.50099i
\(523\) −176.234 57.2620i −0.336968 0.109488i 0.135645 0.990757i \(-0.456689\pi\)
−0.472613 + 0.881270i \(0.656689\pi\)
\(524\) 1843.19 + 1339.15i 3.51753 + 2.55563i
\(525\) 80.0644 + 110.199i 0.152504 + 0.209903i
\(526\) 113.321i 0.215439i
\(527\) −412.831 298.232i −0.783361 0.565906i
\(528\) 1832.80 3.47122
\(529\) 84.0776 61.0860i 0.158937 0.115474i
\(530\) 454.216 625.175i 0.857011 1.17958i
\(531\) −287.390 + 884.494i −0.541223 + 1.66571i
\(532\) 548.928 1.03182
\(533\) 12.0760i 0.0226567i
\(534\) −160.351 + 493.510i −0.300283 + 0.924176i
\(535\) −165.177 508.363i −0.308743 0.950212i
\(536\) −522.612 1608.43i −0.975022 3.00081i
\(537\) 448.894 326.140i 0.835929 0.607338i
\(538\) 422.675 + 137.335i 0.785641 + 0.255270i
\(539\) 268.959 + 370.190i 0.498996 + 0.686810i
\(540\) −497.884 + 685.279i −0.922008 + 1.26904i
\(541\) 118.173 + 363.700i 0.218435 + 0.672274i 0.998892 + 0.0470645i \(0.0149866\pi\)
−0.780457 + 0.625210i \(0.785013\pi\)
\(542\) −213.065 + 293.259i −0.393109 + 0.541068i
\(543\) 945.543 + 686.977i 1.74133 + 1.26515i
\(544\) 695.242 225.898i 1.27802 0.415253i
\(545\) −192.953 140.188i −0.354042 0.257226i
\(546\) −328.339 + 238.553i −0.601354 + 0.436909i
\(547\) −263.137 + 809.851i −0.481054 + 1.48053i 0.356561 + 0.934272i \(0.383949\pi\)
−0.837616 + 0.546260i \(0.816051\pi\)
\(548\) 444.084 + 611.229i 0.810371 + 1.11538i
\(549\) −740.030 + 240.450i −1.34796 + 0.437979i
\(550\) −375.893 + 122.135i −0.683442 + 0.222064i
\(551\) 288.466 + 93.7282i 0.523531 + 0.170106i
\(552\) −2328.62 −4.21851
\(553\) 214.278i 0.387483i
\(554\) −1449.33 470.916i −2.61612 0.850029i
\(555\) −739.996 537.639i −1.33333 0.968718i
\(556\) 579.858 + 798.106i 1.04291 + 1.43544i
\(557\) 1012.43i 1.81766i −0.417172 0.908828i \(-0.636979\pi\)
0.417172 0.908828i \(-0.363021\pi\)
\(558\) −4.24099 1563.89i −0.00760035 2.80268i
\(559\) 440.145 0.787380
\(560\) −322.123 + 234.036i −0.575220 + 0.417922i
\(561\) 529.309 728.532i 0.943510 1.29863i
\(562\) 58.0708 178.723i 0.103329 0.318013i
\(563\) 991.819 1.76167 0.880834 0.473426i \(-0.156983\pi\)
0.880834 + 0.473426i \(0.156983\pi\)
\(564\) 1344.99i 2.38473i
\(565\) 16.7245 51.4726i 0.0296008 0.0911019i
\(566\) −197.120 606.673i −0.348269 1.07186i
\(567\) 13.2848 + 40.8865i 0.0234300 + 0.0721102i
\(568\) −1009.81 + 733.670i −1.77783 + 1.29167i
\(569\) 361.074 + 117.320i 0.634576 + 0.206186i 0.608601 0.793476i \(-0.291731\pi\)
0.0259749 + 0.999663i \(0.491731\pi\)
\(570\) −789.208 1086.25i −1.38458 1.90571i
\(571\) −651.710 + 897.002i −1.14135 + 1.57093i −0.376890 + 0.926258i \(0.623007\pi\)
−0.764458 + 0.644673i \(0.776993\pi\)
\(572\) −254.541 783.395i −0.445001 1.36957i
\(573\) 370.080 509.372i 0.645864 0.888956i
\(574\) −13.9535 10.1378i −0.0243092 0.0176617i
\(575\) 225.940 73.4124i 0.392939 0.127674i
\(576\) 319.842 + 232.379i 0.555281 + 0.403435i
\(577\) −602.456 + 437.710i −1.04412 + 0.758596i −0.971085 0.238734i \(-0.923268\pi\)
−0.0730327 + 0.997330i \(0.523268\pi\)
\(578\) −21.5348 + 66.2774i −0.0372575 + 0.114667i
\(579\) 115.991 + 159.649i 0.200331 + 0.275731i
\(580\) −542.403 + 176.237i −0.935177 + 0.303857i
\(581\) −206.543 + 67.1100i −0.355497 + 0.115508i
\(582\) 1907.01 + 619.625i 3.27665 + 1.06465i
\(583\) −616.096 −1.05677
\(584\) 293.250i 0.502140i
\(585\) 400.029 + 129.977i 0.683811 + 0.222184i
\(586\) −106.396 77.3009i −0.181562 0.131913i
\(587\) −412.213 567.363i −0.702238 0.966547i −0.999929 0.0118850i \(-0.996217\pi\)
0.297692 0.954662i \(-0.403783\pi\)
\(588\) 1774.17i 3.01730i
\(589\) 576.283 + 185.520i 0.978410 + 0.314974i
\(590\) 967.796 1.64033
\(591\) 1010.99 734.531i 1.71065 1.24286i
\(592\) −953.936 + 1312.98i −1.61138 + 2.21787i
\(593\) −107.958 + 332.260i −0.182054 + 0.560304i −0.999885 0.0151540i \(-0.995176\pi\)
0.817831 + 0.575458i \(0.195176\pi\)
\(594\) 965.477 1.62538
\(595\) 195.632i 0.328793i
\(596\) 693.764 2135.19i 1.16403 3.58253i
\(597\) 22.8000 + 70.1710i 0.0381909 + 0.117539i
\(598\) 218.733 + 673.190i 0.365774 + 1.12574i
\(599\) −229.413 + 166.678i −0.382993 + 0.278261i −0.762578 0.646896i \(-0.776067\pi\)
0.379585 + 0.925157i \(0.376067\pi\)
\(600\) −831.264 270.094i −1.38544 0.450157i
\(601\) −369.717 508.871i −0.615169 0.846708i 0.381821 0.924236i \(-0.375297\pi\)
−0.996990 + 0.0775285i \(0.975297\pi\)
\(602\) −369.501 + 508.575i −0.613789 + 0.844808i
\(603\) −373.034 1148.08i −0.618630 1.90395i
\(604\) −93.2252 + 128.313i −0.154346 + 0.212439i
\(605\) −33.8807 24.6158i −0.0560012 0.0406873i
\(606\) 1701.11 552.725i 2.80712 0.912088i
\(607\) 311.798 + 226.535i 0.513671 + 0.373204i 0.814214 0.580564i \(-0.197168\pi\)
−0.300544 + 0.953768i \(0.597168\pi\)
\(608\) −703.031 + 510.782i −1.15630 + 0.840101i
\(609\) 69.2298 213.067i 0.113678 0.349864i
\(610\) 475.945 + 655.082i 0.780238 + 1.07391i
\(611\) −221.771 + 72.0577i −0.362964 + 0.117934i
\(612\) 2011.48 653.570i 3.28673 1.06792i
\(613\) −412.130 133.909i −0.672317 0.218449i −0.0470884 0.998891i \(-0.514994\pi\)
−0.625229 + 0.780442i \(0.714994\pi\)
\(614\) 361.995 0.589569
\(615\) 29.5090i 0.0479822i
\(616\) 638.159 + 207.350i 1.03597 + 0.336608i
\(617\) 349.000 + 253.563i 0.565640 + 0.410961i 0.833519 0.552491i \(-0.186323\pi\)
−0.267879 + 0.963453i \(0.586323\pi\)
\(618\) −921.092 1267.77i −1.49044 2.05142i
\(619\) 635.703i 1.02698i 0.858094 + 0.513492i \(0.171649\pi\)
−0.858094 + 0.513492i \(0.828351\pi\)
\(620\) −1081.68 + 354.705i −1.74464 + 0.572104i
\(621\) −580.325 −0.934501
\(622\) 1266.17 919.925i 2.03564 1.47898i
\(623\) −52.8277 + 72.7111i −0.0847957 + 0.116711i
\(624\) 380.720 1171.74i 0.610129 1.87778i
\(625\) −299.754 −0.479607
\(626\) 775.425i 1.23870i
\(627\) −330.796 + 1018.08i −0.527585 + 1.62374i
\(628\) 194.588 + 598.881i 0.309854 + 0.953632i
\(629\) 246.410 + 758.372i 0.391749 + 1.20568i
\(630\) −486.009 + 353.106i −0.771443 + 0.560486i
\(631\) −111.160 36.1181i −0.176165 0.0572395i 0.219606 0.975589i \(-0.429523\pi\)
−0.395771 + 0.918349i \(0.629523\pi\)
\(632\) 808.180 + 1112.36i 1.27877 + 1.76007i
\(633\) 1141.64 1571.33i 1.80353 2.48235i
\(634\) −179.253 551.683i −0.282733 0.870163i
\(635\) −62.1289 + 85.5131i −0.0978408 + 0.134666i
\(636\) −1932.57 1404.09i −3.03863 2.20769i
\(637\) 292.538 95.0513i 0.459243 0.149217i
\(638\) 525.903 + 382.091i 0.824299 + 0.598888i
\(639\) −720.790 + 523.685i −1.12800 + 0.819538i
\(640\) −89.8055 + 276.393i −0.140321 + 0.431864i
\(641\) 104.210 + 143.433i 0.162574 + 0.223764i 0.882530 0.470255i \(-0.155838\pi\)
−0.719956 + 0.694019i \(0.755838\pi\)
\(642\) −2246.65 + 729.980i −3.49945 + 1.13704i
\(643\) 634.179 206.057i 0.986281 0.320462i 0.228910 0.973447i \(-0.426484\pi\)
0.757371 + 0.652985i \(0.226484\pi\)
\(644\) −672.530 218.518i −1.04430 0.339314i
\(645\) 1075.54 1.66750
\(646\) 1170.52i 1.81194i
\(647\) −1116.24 362.688i −1.72525 0.560568i −0.732502 0.680765i \(-0.761647\pi\)
−0.992750 + 0.120197i \(0.961647\pi\)
\(648\) −223.174 162.145i −0.344404 0.250224i
\(649\) −453.531 624.232i −0.698815 0.961837i
\(650\) 265.684i 0.408745i
\(651\) 137.029 425.656i 0.210490 0.653850i
\(652\) 523.041 0.802211
\(653\) −819.930 + 595.714i −1.25563 + 0.912272i −0.998535 0.0541126i \(-0.982767\pi\)
−0.257100 + 0.966385i \(0.582767\pi\)
\(654\) −619.544 + 852.729i −0.947315 + 1.30387i
\(655\) 298.266 917.970i 0.455369 1.40148i
\(656\) 52.3581 0.0798142
\(657\) 209.318i 0.318597i
\(658\) 102.916 316.742i 0.156407 0.481370i
\(659\) 87.1754 + 268.298i 0.132284 + 0.407130i 0.995158 0.0982906i \(-0.0313375\pi\)
−0.862873 + 0.505420i \(0.831337\pi\)
\(660\) −621.996 1914.31i −0.942418 2.90047i
\(661\) −737.874 + 536.097i −1.11630 + 0.811039i −0.983644 0.180124i \(-0.942350\pi\)
−0.132655 + 0.991162i \(0.542350\pi\)
\(662\) 1640.68 + 533.089i 2.47837 + 0.805271i
\(663\) −355.810 489.730i −0.536666 0.738657i
\(664\) 819.097 1127.39i 1.23358 1.69788i
\(665\) −71.8636 221.173i −0.108066 0.332592i
\(666\) −1439.27 + 1980.98i −2.16106 + 2.97445i
\(667\) −316.107 229.666i −0.473924 0.344326i
\(668\) −632.899 + 205.641i −0.947454 + 0.307846i
\(669\) −208.644 151.589i −0.311875 0.226590i
\(670\) −1016.29 + 738.380i −1.51685 + 1.10206i
\(671\) 199.492 613.973i 0.297305 0.915012i
\(672\) 377.275 + 519.275i 0.561421 + 0.772730i
\(673\) 639.966 207.937i 0.950915 0.308971i 0.207827 0.978166i \(-0.433361\pi\)
0.743087 + 0.669195i \(0.233361\pi\)
\(674\) 991.889 322.284i 1.47165 0.478166i
\(675\) −207.163 67.3113i −0.306908 0.0997205i
\(676\) 1019.69 1.50841
\(677\) 617.906i 0.912712i 0.889797 + 0.456356i \(0.150846\pi\)
−0.889797 + 0.456356i \(0.849154\pi\)
\(678\) −227.476 73.9116i −0.335511 0.109014i
\(679\) 280.968 + 204.136i 0.413797 + 0.300641i
\(680\) −737.853 1015.57i −1.08508 1.49348i
\(681\) 817.276i 1.20011i
\(682\) 1051.77 + 759.804i 1.54218 + 1.11408i
\(683\) −878.402 −1.28609 −0.643047 0.765827i \(-0.722330\pi\)
−0.643047 + 0.765827i \(0.722330\pi\)
\(684\) −2034.02 + 1477.80i −2.97371 + 2.16052i
\(685\) 188.138 258.949i 0.274653 0.378028i
\(686\) −302.536 + 931.111i −0.441015 + 1.35731i
\(687\) 390.655 0.568639
\(688\) 1908.34i 2.77375i
\(689\) −127.979 + 393.879i −0.185746 + 0.571668i
\(690\) 534.496 + 1645.01i 0.774632 + 2.38407i
\(691\) −28.7096 88.3592i −0.0415480 0.127871i 0.928131 0.372254i \(-0.121415\pi\)
−0.969679 + 0.244382i \(0.921415\pi\)
\(692\) 1450.74 1054.03i 2.09645 1.52316i
\(693\) 455.510 + 148.004i 0.657301 + 0.213570i
\(694\) −486.346 669.398i −0.700787 0.964550i
\(695\) 245.659 338.120i 0.353466 0.486504i
\(696\) 444.227 + 1367.19i 0.638257 + 1.96435i
\(697\) 15.1209 20.8121i 0.0216943 0.0298596i
\(698\) 1895.40 + 1377.09i 2.71548 + 1.97291i
\(699\) 493.656 160.399i 0.706232 0.229469i
\(700\) −214.732 156.012i −0.306760 0.222874i
\(701\) 728.748 529.466i 1.03958 0.755302i 0.0693793 0.997590i \(-0.477898\pi\)
0.970204 + 0.242289i \(0.0778981\pi\)
\(702\) 200.555 617.244i 0.285690 0.879265i
\(703\) −557.162 766.868i −0.792549 1.09085i
\(704\) −311.949 + 101.358i −0.443109 + 0.143975i
\(705\) −541.920 + 176.080i −0.768680 + 0.249759i
\(706\) −2060.25 669.415i −2.91820 0.948179i
\(707\) 309.799 0.438189
\(708\) 2991.69i 4.22555i
\(709\) 991.195 + 322.059i 1.39802 + 0.454244i 0.908550 0.417777i \(-0.137191\pi\)
0.489469 + 0.872021i \(0.337191\pi\)
\(710\) 750.074 + 544.960i 1.05644 + 0.767550i
\(711\) 576.869 + 793.992i 0.811349 + 1.11673i
\(712\) 576.707i 0.809981i
\(713\) −632.192 456.700i −0.886665 0.640533i
\(714\) 864.570 1.21088
\(715\) −282.321 + 205.118i −0.394854 + 0.286879i
\(716\) −635.511 + 874.706i −0.887586 + 1.22166i
\(717\) −320.631 + 986.802i −0.447185 + 1.37629i
\(718\) −1151.62 −1.60393
\(719\) 583.949i 0.812169i 0.913836 + 0.406084i \(0.133106\pi\)
−0.913836 + 0.406084i \(0.866894\pi\)
\(720\) 563.544 1734.41i 0.782699 2.40890i
\(721\) −83.8726 258.133i −0.116328 0.358021i
\(722\) −22.9922 70.7628i −0.0318452 0.0980094i
\(723\) 205.984 149.656i 0.284902 0.206993i
\(724\) −2165.95 703.760i −2.99164 0.972044i
\(725\) −86.2045 118.650i −0.118903 0.163656i
\(726\) −108.786 + 149.732i −0.149843 + 0.206242i
\(727\) 50.2526 + 154.661i 0.0691232 + 0.212739i 0.979651 0.200709i \(-0.0643244\pi\)
−0.910528 + 0.413448i \(0.864324\pi\)
\(728\) 265.124 364.912i 0.364181 0.501253i
\(729\) −961.768 698.765i −1.31930 0.958526i
\(730\) 207.161 67.3107i 0.283782 0.0922064i
\(731\) −758.557 551.124i −1.03770 0.753932i
\(732\) 2025.02 1471.26i 2.76642 2.00992i
\(733\) −92.0371 + 283.261i −0.125562 + 0.386441i −0.994003 0.109352i \(-0.965122\pi\)
0.868441 + 0.495793i \(0.165122\pi\)
\(734\) −948.835 1305.96i −1.29269 1.77924i
\(735\) 714.846 232.268i 0.972580 0.316010i
\(736\) 1064.66 345.930i 1.44655 0.470014i
\(737\) 952.516 + 309.491i 1.29242 + 0.419934i
\(738\) 78.9962 0.107041
\(739\) 736.678i 0.996858i −0.866930 0.498429i \(-0.833910\pi\)
0.866930 0.498429i \(-0.166090\pi\)
\(740\) 1695.11 + 550.773i 2.29068 + 0.744288i
\(741\) 582.162 + 422.965i 0.785643 + 0.570803i
\(742\) −347.677 478.537i −0.468568 0.644928i
\(743\) 554.954i 0.746910i 0.927648 + 0.373455i \(0.121827\pi\)
−0.927648 + 0.373455i \(0.878173\pi\)
\(744\) 894.075 + 2726.50i 1.20171 + 3.66465i
\(745\) −951.131 −1.27669
\(746\) 1365.75 992.279i 1.83077 1.33013i
\(747\) 584.662 804.718i 0.782680 1.07727i
\(748\) −542.240 + 1668.84i −0.724920 + 2.23107i
\(749\) −409.149 −0.546261
\(750\) 2368.03i 3.15737i
\(751\) −243.760 + 750.217i −0.324581 + 0.998958i 0.647048 + 0.762449i \(0.276003\pi\)
−0.971629 + 0.236509i \(0.923997\pi\)
\(752\) 312.421 + 961.532i 0.415453 + 1.27863i
\(753\) 622.274 + 1915.16i 0.826393 + 2.54338i
\(754\) 353.520 256.847i 0.468859 0.340646i
\(755\) 63.9045 + 20.7638i 0.0846417 + 0.0275018i
\(756\) 381.103 + 524.543i 0.504105 + 0.693840i
\(757\) 31.4163 43.2408i 0.0415010 0.0571213i −0.787762 0.615979i \(-0.788760\pi\)
0.829263 + 0.558858i \(0.188760\pi\)
\(758\) −438.426 1349.34i −0.578398 1.78013i
\(759\) 810.561 1115.64i 1.06793 1.46988i
\(760\) 1207.25 + 877.116i 1.58848 + 1.15410i
\(761\) 589.377 191.500i 0.774477 0.251643i 0.104996 0.994473i \(-0.466517\pi\)
0.669480 + 0.742830i \(0.266517\pi\)
\(762\) 377.914 + 274.571i 0.495950 + 0.360329i
\(763\) −147.695 + 107.306i −0.193571 + 0.140638i
\(764\) −379.121 + 1166.82i −0.496232 + 1.52725i
\(765\) −526.671 724.900i −0.688458 0.947581i
\(766\) 959.966 311.912i 1.25322 0.407195i
\(767\) −493.291 + 160.280i −0.643143 + 0.208970i
\(768\) 1741.14 + 565.732i 2.26711 + 0.736630i
\(769\) −846.263 −1.10047 −0.550236 0.835009i \(-0.685462\pi\)
−0.550236 + 0.835009i \(0.685462\pi\)
\(770\) 498.410i 0.647285i
\(771\) −1324.08 430.219i −1.71735 0.558001i
\(772\) −311.088 226.019i −0.402964 0.292770i
\(773\) 57.1648 + 78.6806i 0.0739519 + 0.101786i 0.844391 0.535728i \(-0.179963\pi\)
−0.770439 + 0.637514i \(0.779963\pi\)
\(774\) 2879.24i 3.71995i
\(775\) −172.706 236.359i −0.222846 0.304979i
\(776\) −2228.49 −2.87177
\(777\) −566.426 + 411.533i −0.728991 + 0.529643i
\(778\) −322.410 + 443.759i −0.414409 + 0.570385i
\(779\) −9.44993 + 29.0839i −0.0121308 + 0.0373349i
\(780\) −1353.05 −1.73468
\(781\) 739.181i 0.946455i
\(782\) 465.960 1434.08i 0.595857 1.83386i
\(783\) 110.708 + 340.724i 0.141389 + 0.435151i
\(784\) −412.114 1268.36i −0.525656 1.61780i
\(785\) 215.825 156.806i 0.274937 0.199753i
\(786\) −4056.85 1318.15i −5.16139 1.67704i
\(787\) 199.429 + 274.491i 0.253404 + 0.348781i 0.916700 0.399576i \(-0.130843\pi\)
−0.663295 + 0.748358i \(0.730843\pi\)
\(788\) −1431.29 + 1970.01i −1.81636 + 2.50001i
\(789\) 45.8601 + 141.143i 0.0581244 + 0.178888i
\(790\) 600.306 826.250i 0.759880 1.04589i
\(791\) −33.5152 24.3502i −0.0423706 0.0307841i
\(792\) −2922.87 + 949.698i −3.69049 + 1.19911i
\(793\) −351.082 255.076i −0.442726 0.321660i
\(794\) 957.171 695.426i 1.20551 0.875851i
\(795\) −312.730 + 962.484i −0.393371 + 1.21067i
\(796\) −84.5063 116.313i −0.106164 0.146122i
\(797\) −363.890 + 118.235i −0.456574 + 0.148350i −0.528270 0.849077i \(-0.677159\pi\)
0.0716955 + 0.997427i \(0.477159\pi\)
\(798\) −977.447 + 317.592i −1.22487 + 0.397985i
\(799\) 472.432 + 153.502i 0.591279 + 0.192118i
\(800\) 420.185 0.525231
\(801\) 411.646i 0.513915i
\(802\) 1153.24 + 374.712i 1.43796 + 0.467222i
\(803\) −140.496 102.076i −0.174964 0.127119i
\(804\) 2282.51 + 3141.61i 2.83894 + 3.90747i
\(805\) 299.582i 0.372152i
\(806\) 704.233 514.579i 0.873739 0.638435i
\(807\) −582.027 −0.721224
\(808\) −1608.24 + 1168.45i −1.99039 + 1.44610i
\(809\) 689.865 949.517i 0.852738 1.17369i −0.130515 0.991446i \(-0.541663\pi\)
0.983253 0.182246i \(-0.0583368\pi\)
\(810\) −63.3186 + 194.875i −0.0781712 + 0.240586i
\(811\) −284.392 −0.350668 −0.175334 0.984509i \(-0.556100\pi\)
−0.175334 + 0.984509i \(0.556100\pi\)
\(812\) 436.545i 0.537617i
\(813\) 146.696 451.485i 0.180438 0.555332i
\(814\) −627.776 1932.10i −0.771224 2.37358i
\(815\) −68.4746 210.743i −0.0840179 0.258580i
\(816\) −2123.32 + 1542.68i −2.60211 + 1.89055i
\(817\) 1060.04 + 344.429i 1.29748 + 0.421578i
\(818\) 1263.13 + 1738.55i 1.54417 + 2.12537i
\(819\) 189.242 260.470i 0.231065 0.318034i
\(820\) −17.7687 54.6865i −0.0216692 0.0666908i
\(821\) −451.777 + 621.818i −0.550276 + 0.757390i −0.990050 0.140718i \(-0.955059\pi\)
0.439773 + 0.898109i \(0.355059\pi\)
\(822\) −1144.39 831.449i −1.39220 1.01150i
\(823\) 393.697 127.920i 0.478368 0.155431i −0.0599009 0.998204i \(-0.519078\pi\)
0.538269 + 0.842773i \(0.319078\pi\)
\(824\) 1408.99 + 1023.69i 1.70994 + 1.24234i
\(825\) 418.754 304.243i 0.507581 0.368779i
\(826\) 228.918 704.537i 0.277140 0.852951i
\(827\) 583.811 + 803.546i 0.705938 + 0.971640i 0.999875 + 0.0158154i \(0.00503439\pi\)
−0.293937 + 0.955825i \(0.594966\pi\)
\(828\) 3080.29 1000.85i 3.72016 1.20875i
\(829\) 772.657 251.051i 0.932035 0.302837i 0.196640 0.980476i \(-0.436997\pi\)
0.735395 + 0.677639i \(0.236997\pi\)
\(830\) −984.436 319.863i −1.18607 0.385377i
\(831\) 1995.74 2.40162
\(832\) 220.488i 0.265010i
\(833\) −623.185 202.485i −0.748121 0.243079i
\(834\) −1494.28 1085.66i −1.79170 1.30175i
\(835\) 165.713 + 228.085i 0.198459 + 0.273156i
\(836\) 2085.91i 2.49511i
\(837\) 222.816 + 679.483i 0.266208 + 0.811808i
\(838\) 950.820 1.13463
\(839\) −429.214 + 311.842i −0.511578 + 0.371683i −0.813422 0.581674i \(-0.802398\pi\)
0.301844 + 0.953357i \(0.402398\pi\)
\(840\) 647.858 891.700i 0.771260 1.06155i
\(841\) 185.344 570.431i 0.220386 0.678277i
\(842\) −2416.16 −2.86955
\(843\) 246.104i 0.291938i
\(844\) −1169.53 + 3599.43i −1.38569 + 4.26473i
\(845\) −133.494 410.851i −0.157981 0.486214i
\(846\) 471.370 + 1450.73i 0.557175 + 1.71481i
\(847\) −25.9338 + 18.8420i −0.0306185 + 0.0222456i
\(848\) 1707.74 + 554.879i 2.01385 + 0.654339i
\(849\) 491.033 + 675.849i 0.578366 + 0.796053i
\(850\) 332.674 457.887i 0.391382 0.538691i
\(851\) 377.341 + 1161.34i 0.443409 + 1.36467i
\(852\) 1684.60 2318.66i 1.97723 2.72143i
\(853\) 334.092 + 242.732i 0.391667 + 0.284563i 0.766138 0.642676i \(-0.222176\pi\)
−0.374471 + 0.927239i \(0.622176\pi\)
\(854\) 589.465 191.529i 0.690241 0.224273i
\(855\) 861.717 + 626.074i 1.00786 + 0.732251i
\(856\) 2123.98 1543.16i 2.48129 1.80276i
\(857\) 437.452 1346.34i 0.510446 1.57099i −0.280973 0.959716i \(-0.590657\pi\)
0.791419 0.611274i \(-0.209343\pi\)
\(858\) 906.493 + 1247.68i 1.05652 + 1.45417i
\(859\) 343.366 111.566i 0.399728 0.129879i −0.102253 0.994758i \(-0.532605\pi\)
0.501980 + 0.864879i \(0.332605\pi\)
\(860\) −1993.20 + 647.631i −2.31768 + 0.753059i
\(861\) 21.4820 + 6.97994i 0.0249501 + 0.00810678i
\(862\) −1931.58 −2.24082
\(863\) 613.078i 0.710403i −0.934790 0.355201i \(-0.884412\pi\)
0.934790 0.355201i \(-0.115588\pi\)
\(864\) −976.182 317.181i −1.12984 0.367107i
\(865\) −614.613 446.542i −0.710535 0.516234i
\(866\) −1427.60 1964.92i −1.64850 2.26896i
\(867\) 91.2646i 0.105265i
\(868\) 2.36292 + 871.342i 0.00272226 + 1.00385i
\(869\) −814.251 −0.936998
\(870\) 863.862 627.632i 0.992945 0.721416i
\(871\) 395.724 544.668i 0.454333 0.625336i
\(872\) 361.994 1114.10i 0.415131 1.27764i
\(873\) −1590.67 −1.82208
\(874\) 1792.48i 2.05089i
\(875\) −126.743 + 390.074i −0.144849 + 0.445799i
\(876\) −208.073 640.384i −0.237527 0.731032i
\(877\) −242.369 745.934i −0.276361 0.850552i −0.988856 0.148875i \(-0.952435\pi\)
0.712495 0.701677i \(-0.247565\pi\)
\(878\) −705.837 + 512.821i −0.803915 + 0.584078i
\(879\) 163.801 + 53.2221i 0.186349 + 0.0605484i
\(880\) 889.331 + 1224.06i 1.01060 + 1.39098i
\(881\) −355.021 + 488.644i −0.402975 + 0.554647i −0.961487 0.274849i \(-0.911372\pi\)
0.558513 + 0.829496i \(0.311372\pi\)
\(882\) −621.785 1913.66i −0.704971 2.16968i
\(883\) −578.476 + 796.203i −0.655125 + 0.901702i −0.999308 0.0372003i \(-0.988156\pi\)
0.344183 + 0.938903i \(0.388156\pi\)
\(884\) 954.279 + 693.324i 1.07950 + 0.784303i
\(885\) −1205.41 + 391.660i −1.36204 + 0.442554i
\(886\) −1019.69 740.846i −1.15089 0.836169i
\(887\) 102.375 74.3799i 0.115417 0.0838556i −0.528579 0.848884i \(-0.677275\pi\)
0.643997 + 0.765028i \(0.277275\pi\)
\(888\) 1388.29 4272.71i 1.56339 4.81161i
\(889\) 47.5562 + 65.4555i 0.0534941 + 0.0736283i
\(890\) −407.404 + 132.374i −0.457758 + 0.148734i
\(891\) 155.368 50.4820i 0.174374 0.0566576i
\(892\) 477.940 + 155.292i 0.535808 + 0.174094i
\(893\) −590.500 −0.661254
\(894\) 4203.40i 4.70179i
\(895\) 435.634 + 141.546i 0.486742 + 0.158152i
\(896\) 179.967 + 130.753i 0.200856 + 0.145930i
\(897\) −544.871 749.951i −0.607437 0.836066i
\(898\) 1252.83i 1.39514i
\(899\) −147.538 + 458.300i −0.164113 + 0.509788i
\(900\) 1215.68 1.35076
\(901\) 713.755 518.573i 0.792181 0.575553i
\(902\) −38.5234 + 53.0229i −0.0427089 + 0.0587837i
\(903\) 254.403 782.973i 0.281731 0.867080i
\(904\) 265.825 0.294054
\(905\) 964.835i 1.06612i
\(906\) 91.7631 282.418i 0.101284 0.311719i
\(907\) 0.540555 + 1.66366i 0.000595981 + 0.00183424i 0.951354 0.308100i \(-0.0996930\pi\)
−0.950758 + 0.309934i \(0.899693\pi\)
\(908\) −492.119 1514.59i −0.541981 1.66805i
\(909\) −1147.94 + 834.027i −1.26286 + 0.917521i
\(910\) −318.641 103.533i −0.350154 0.113772i
\(911\) 613.900 + 844.961i 0.673875 + 0.927509i 0.999840 0.0178723i \(-0.00568924\pi\)
−0.325965 + 0.945382i \(0.605689\pi\)
\(912\) 1833.85 2524.08i 2.01080 2.76763i
\(913\) 255.016 + 784.860i 0.279317 + 0.859649i
\(914\) 669.925 922.073i 0.732960 1.00883i
\(915\) −857.905 623.305i −0.937601 0.681207i
\(916\) −723.966 + 235.231i −0.790356 + 0.256802i
\(917\) −597.714 434.265i −0.651815 0.473571i
\(918\) −1118.52 + 812.650i −1.21843 + 0.885240i
\(919\) −139.538 + 429.454i −0.151837 + 0.467305i −0.997827 0.0658934i \(-0.979010\pi\)
0.845990 + 0.533199i \(0.179010\pi\)
\(920\) −1129.92 1555.20i −1.22817 1.69043i
\(921\) −450.871 + 146.497i −0.489546 + 0.159063i
\(922\) −311.103 + 101.083i −0.337421 + 0.109635i
\(923\) −472.569 153.547i −0.511993 0.166357i
\(924\) −1540.70 −1.66743
\(925\) 458.338i 0.495501i
\(926\) 2445.50 + 794.592i 2.64093 + 0.858090i
\(927\) 1005.72 + 730.697i 1.08492 + 0.788238i
\(928\) −406.208 559.098i −0.437725 0.602476i
\(929\) 297.507i 0.320244i −0.987097 0.160122i \(-0.948811\pi\)
0.987097 0.160122i \(-0.0511888\pi\)
\(930\) 1720.87 1257.43i 1.85039 1.35207i
\(931\) 778.928 0.836658
\(932\) −818.266 + 594.505i −0.877968 + 0.637881i
\(933\) −1204.75 + 1658.19i −1.29126 + 1.77727i
\(934\) 322.709 993.196i 0.345513 1.06338i
\(935\) 743.396 0.795076
\(936\) 2065.91i 2.20717i
\(937\) 115.639 355.901i 0.123414 0.379830i −0.870195 0.492708i \(-0.836007\pi\)
0.993609 + 0.112878i \(0.0360069\pi\)
\(938\) 297.138 + 914.495i 0.316778 + 0.974942i
\(939\) −313.809 965.805i −0.334195 1.02855i
\(940\) 898.266 652.628i 0.955602 0.694285i
\(941\) 91.4712 + 29.7208i 0.0972064 + 0.0315843i 0.357216 0.934022i \(-0.383726\pi\)
−0.260010 + 0.965606i \(0.583726\pi\)
\(942\) −692.985 953.812i −0.735653 1.01254i
\(943\) 23.1555 31.8708i 0.0245551 0.0337972i
\(944\) 694.926 + 2138.76i 0.736150 + 2.26564i
\(945\) 161.456 222.225i 0.170853 0.235158i
\(946\) 1932.57 + 1404.09i 2.04289 + 1.48424i
\(947\) −354.052 + 115.039i −0.373867 + 0.121477i −0.489923 0.871766i \(-0.662975\pi\)
0.116055 + 0.993243i \(0.462975\pi\)
\(948\) −2554.14 1855.69i −2.69424 1.95748i
\(949\) −94.4435 + 68.6172i −0.0995190 + 0.0723048i
\(950\) −207.907 + 639.873i −0.218850 + 0.673551i
\(951\) 446.525 + 614.589i 0.469532 + 0.646255i
\(952\) −913.843 + 296.926i −0.959919 + 0.311897i
\(953\) 1152.04 374.322i 1.20886 0.392783i 0.365847 0.930675i \(-0.380779\pi\)
0.843014 + 0.537892i \(0.180779\pi\)
\(954\) 2576.59 + 837.184i 2.70083 + 0.877551i
\(955\) 519.764 0.544256
\(956\) 2021.82i 2.11487i
\(957\) −809.651 263.071i −0.846030 0.274892i
\(958\) −820.194 595.906i −0.856153 0.622031i
\(959\) −144.009 198.211i −0.150166 0.206685i
\(960\) 538.786i 0.561235i
\(961\) −292.004 + 915.562i −0.303854 + 0.952719i
\(962\) −1365.62 −1.41957
\(963\) 1516.07 1101.49i 1.57432 1.14381i
\(964\) −291.617 + 401.377i −0.302507 + 0.416366i
\(965\) −50.3407 + 154.933i −0.0521665 + 0.160552i
\(966\) 1323.96 1.37056
\(967\) 596.845i 0.617213i −0.951190 0.308606i \(-0.900137\pi\)
0.951190 0.308606i \(-0.0998626\pi\)
\(968\) 63.5628 195.626i 0.0656641 0.202093i
\(969\) −473.700 1457.90i −0.488854 1.50454i
\(970\) 511.515 + 1574.28i 0.527335 + 1.62297i
\(971\) 37.4885 27.2370i 0.0386081 0.0280504i −0.568314 0.822812i \(-0.692404\pi\)
0.606922 + 0.794761i \(0.292404\pi\)
\(972\) 2440.62 + 793.005i 2.51092 + 0.815849i
\(973\) −188.038 258.812i −0.193256 0.265994i
\(974\) −933.948 + 1285.47i −0.958879 + 1.31978i
\(975\) −107.521 330.915i −0.110278 0.339400i
\(976\) −1105.93 + 1522.19i −1.13313 + 1.55962i
\(977\) 710.732 + 516.377i 0.727464 + 0.528533i 0.888760 0.458373i \(-0.151567\pi\)
−0.161296 + 0.986906i \(0.551567\pi\)
\(978\) −931.352 + 302.614i −0.952302 + 0.309422i
\(979\) 276.300 + 200.744i 0.282227 + 0.205050i
\(980\) −1184.90 + 860.882i −1.20908 + 0.878451i
\(981\) 258.387 795.233i 0.263391 0.810635i
\(982\) 284.649 + 391.785i 0.289866 + 0.398966i
\(983\) −600.777 + 195.204i −0.611167 + 0.198580i −0.598215 0.801336i \(-0.704123\pi\)
−0.0129523 + 0.999916i \(0.504123\pi\)
\(984\) −137.844 + 44.7881i −0.140085 + 0.0455164i
\(985\) 981.131 + 318.789i 0.996072 + 0.323643i
\(986\) −930.874 −0.944091
\(987\) 436.157i 0.441901i
\(988\) −1333.55 433.298i −1.34975 0.438561i
\(989\) −1161.62 843.967i −1.17454 0.853354i
\(990\) 1341.79 + 1846.82i 1.35535 + 1.86548i
\(991\) 485.456i 0.489865i 0.969540 + 0.244932i \(0.0787658\pi\)
−0.969540 + 0.244932i \(0.921234\pi\)
\(992\) −813.816 1113.76i −0.820379 1.12274i
\(993\) −2259.23 −2.27516
\(994\) 574.140 417.137i 0.577606 0.419655i
\(995\) −35.8014 + 49.2764i −0.0359813 + 0.0495240i
\(996\) −988.772 + 3043.13i −0.992743 + 3.05535i
\(997\) 822.008 0.824481 0.412241 0.911075i \(-0.364746\pi\)
0.412241 + 0.911075i \(0.364746\pi\)
\(998\) 3526.33i 3.53340i
\(999\) 345.982 1064.82i 0.346328 1.06589i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.3.f.a.15.5 20
3.2 odd 2 279.3.v.a.46.1 20
31.29 odd 10 inner 31.3.f.a.29.5 yes 20
93.29 even 10 279.3.v.a.91.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.3.f.a.15.5 20 1.1 even 1 trivial
31.3.f.a.29.5 yes 20 31.29 odd 10 inner
279.3.v.a.46.1 20 3.2 odd 2
279.3.v.a.91.1 20 93.29 even 10