L(s) = 1 | + (0.173 − 0.984i)5-s + (0.173 + 0.300i)7-s + (0.766 − 0.642i)9-s + (0.766 − 1.32i)11-s + (0.939 + 0.342i)13-s + (−0.766 − 0.642i)19-s + (0.326 + 1.85i)23-s + (−0.939 − 0.342i)25-s + (0.326 − 0.118i)35-s − 1.87·37-s + (−1.43 + 0.524i)41-s + (−0.5 − 0.866i)45-s + (0.766 − 0.642i)47-s + (0.439 − 0.761i)49-s + (0.0603 + 0.342i)53-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)5-s + (0.173 + 0.300i)7-s + (0.766 − 0.642i)9-s + (0.766 − 1.32i)11-s + (0.939 + 0.342i)13-s + (−0.766 − 0.642i)19-s + (0.326 + 1.85i)23-s + (−0.939 − 0.342i)25-s + (0.326 − 0.118i)35-s − 1.87·37-s + (−1.43 + 0.524i)41-s + (−0.5 − 0.866i)45-s + (0.766 − 0.642i)47-s + (0.439 − 0.761i)49-s + (0.0603 + 0.342i)53-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.513+0.858i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.513+0.858i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.513+0.858i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(719,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.513+0.858i)
|
Particular Values
L(21) |
≈ |
1.466922956 |
L(21) |
≈ |
1.466922956 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.173+0.984i)T |
| 19 | 1+(0.766+0.642i)T |
good | 3 | 1+(−0.766+0.642i)T2 |
| 7 | 1+(−0.173−0.300i)T+(−0.5+0.866i)T2 |
| 11 | 1+(−0.766+1.32i)T+(−0.5−0.866i)T2 |
| 13 | 1+(−0.939−0.342i)T+(0.766+0.642i)T2 |
| 17 | 1+(−0.173−0.984i)T2 |
| 23 | 1+(−0.326−1.85i)T+(−0.939+0.342i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+1.87T+T2 |
| 41 | 1+(1.43−0.524i)T+(0.766−0.642i)T2 |
| 43 | 1+(0.939+0.342i)T2 |
| 47 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 53 | 1+(−0.0603−0.342i)T+(−0.939+0.342i)T2 |
| 59 | 1+(−0.766−0.642i)T+(0.173+0.984i)T2 |
| 61 | 1+(0.939−0.342i)T2 |
| 67 | 1+(−0.173+0.984i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+(−0.766+0.642i)T2 |
| 79 | 1+(−0.766+0.642i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(−1.76−0.642i)T+(0.766+0.642i)T2 |
| 97 | 1+(−0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.831204430282686151048658629073, −8.356167425987301212531909120440, −7.18422841045137071596650748255, −6.45647445316805296303329126534, −5.71473363315743450351330412483, −4.99811793399565669109892879695, −3.89127048210134237476464856685, −3.48350150715923967869680499527, −1.81483610072847258740953384780, −1.03188143779678336927879676959,
1.58810479876707496338393692004, 2.30955032332008877390669983433, 3.59697862205992056583519258690, 4.25039907990385125908785011267, 5.08545707655593841234401234439, 6.26235021484750890794680281067, 6.79827287123337314864700455823, 7.35525529860549122109266265075, 8.230914597813344408081200321619, 8.979677881980374828421181767864