L(s) = 1 | + (0.173 + 0.984i)5-s + (0.173 − 0.300i)7-s + (0.766 + 0.642i)9-s + (0.766 + 1.32i)11-s + (0.939 − 0.342i)13-s + (−0.766 + 0.642i)19-s + (0.326 − 1.85i)23-s + (−0.939 + 0.342i)25-s + (0.326 + 0.118i)35-s − 1.87·37-s + (−1.43 − 0.524i)41-s + (−0.5 + 0.866i)45-s + (0.766 + 0.642i)47-s + (0.439 + 0.761i)49-s + (0.0603 − 0.342i)53-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)5-s + (0.173 − 0.300i)7-s + (0.766 + 0.642i)9-s + (0.766 + 1.32i)11-s + (0.939 − 0.342i)13-s + (−0.766 + 0.642i)19-s + (0.326 − 1.85i)23-s + (−0.939 + 0.342i)25-s + (0.326 + 0.118i)35-s − 1.87·37-s + (−1.43 − 0.524i)41-s + (−0.5 + 0.866i)45-s + (0.766 + 0.642i)47-s + (0.439 + 0.761i)49-s + (0.0603 − 0.342i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.466922956\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.466922956\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.173 - 0.984i)T \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
good | 3 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.326 + 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.87T + T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.979677881980374828421181767864, −8.230914597813344408081200321619, −7.35525529860549122109266265075, −6.79827287123337314864700455823, −6.26235021484750890794680281067, −5.08545707655593841234401234439, −4.25039907990385125908785011267, −3.59697862205992056583519258690, −2.30955032332008877390669983433, −1.58810479876707496338393692004,
1.03188143779678336927879676959, 1.81483610072847258740953384780, 3.48350150715923967869680499527, 3.89127048210134237476464856685, 4.99811793399565669109892879695, 5.71473363315743450351330412483, 6.45647445316805296303329126534, 7.18422841045137071596650748255, 8.356167425987301212531909120440, 8.831204430282686151048658629073