L(s) = 1 | + 3·3-s − 7·7-s + 9·9-s − 54·11-s − 55·13-s + 18·17-s − 25·19-s − 21·21-s − 18·23-s + 27·27-s − 54·29-s − 271·31-s − 162·33-s + 314·37-s − 165·39-s − 360·41-s − 163·43-s + 522·47-s − 294·49-s + 54·51-s − 36·53-s − 75·57-s + 126·59-s + 47·61-s − 63·63-s − 343·67-s − 54·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.48·11-s − 1.17·13-s + 0.256·17-s − 0.301·19-s − 0.218·21-s − 0.163·23-s + 0.192·27-s − 0.345·29-s − 1.57·31-s − 0.854·33-s + 1.39·37-s − 0.677·39-s − 1.37·41-s − 0.578·43-s + 1.62·47-s − 6/7·49-s + 0.148·51-s − 0.0933·53-s − 0.174·57-s + 0.278·59-s + 0.0986·61-s − 0.125·63-s − 0.625·67-s − 0.0942·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + p T + p^{3} T^{2} \) |
| 11 | \( 1 + 54 T + p^{3} T^{2} \) |
| 13 | \( 1 + 55 T + p^{3} T^{2} \) |
| 17 | \( 1 - 18 T + p^{3} T^{2} \) |
| 19 | \( 1 + 25 T + p^{3} T^{2} \) |
| 23 | \( 1 + 18 T + p^{3} T^{2} \) |
| 29 | \( 1 + 54 T + p^{3} T^{2} \) |
| 31 | \( 1 + 271 T + p^{3} T^{2} \) |
| 37 | \( 1 - 314 T + p^{3} T^{2} \) |
| 41 | \( 1 + 360 T + p^{3} T^{2} \) |
| 43 | \( 1 + 163 T + p^{3} T^{2} \) |
| 47 | \( 1 - 522 T + p^{3} T^{2} \) |
| 53 | \( 1 + 36 T + p^{3} T^{2} \) |
| 59 | \( 1 - 126 T + p^{3} T^{2} \) |
| 61 | \( 1 - 47 T + p^{3} T^{2} \) |
| 67 | \( 1 + 343 T + p^{3} T^{2} \) |
| 71 | \( 1 + 1080 T + p^{3} T^{2} \) |
| 73 | \( 1 + 1054 T + p^{3} T^{2} \) |
| 79 | \( 1 + 568 T + p^{3} T^{2} \) |
| 83 | \( 1 - 1422 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1440 T + p^{3} T^{2} \) |
| 97 | \( 1 + 439 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60393524382082800308740318364, −9.933335741707288806558710574607, −8.973556349541966096752627848731, −7.84215172273293491935428795961, −7.20901275437343674262649268955, −5.74768931925189855809602543867, −4.67087257949738426258614610369, −3.21995671807754163112183796659, −2.16935379911079178249702886515, 0,
2.16935379911079178249702886515, 3.21995671807754163112183796659, 4.67087257949738426258614610369, 5.74768931925189855809602543867, 7.20901275437343674262649268955, 7.84215172273293491935428795961, 8.973556349541966096752627848731, 9.933335741707288806558710574607, 10.60393524382082800308740318364