Properties

Label 2-300-1.1-c3-0-8
Degree $2$
Conductor $300$
Sign $-1$
Analytic cond. $17.7005$
Root an. cond. $4.20720$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 7·7-s + 9·9-s − 54·11-s − 55·13-s + 18·17-s − 25·19-s − 21·21-s − 18·23-s + 27·27-s − 54·29-s − 271·31-s − 162·33-s + 314·37-s − 165·39-s − 360·41-s − 163·43-s + 522·47-s − 294·49-s + 54·51-s − 36·53-s − 75·57-s + 126·59-s + 47·61-s − 63·63-s − 343·67-s − 54·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.48·11-s − 1.17·13-s + 0.256·17-s − 0.301·19-s − 0.218·21-s − 0.163·23-s + 0.192·27-s − 0.345·29-s − 1.57·31-s − 0.854·33-s + 1.39·37-s − 0.677·39-s − 1.37·41-s − 0.578·43-s + 1.62·47-s − 6/7·49-s + 0.148·51-s − 0.0933·53-s − 0.174·57-s + 0.278·59-s + 0.0986·61-s − 0.125·63-s − 0.625·67-s − 0.0942·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(17.7005\)
Root analytic conductor: \(4.20720\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 300,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 + p T + p^{3} T^{2} \)
11 \( 1 + 54 T + p^{3} T^{2} \)
13 \( 1 + 55 T + p^{3} T^{2} \)
17 \( 1 - 18 T + p^{3} T^{2} \)
19 \( 1 + 25 T + p^{3} T^{2} \)
23 \( 1 + 18 T + p^{3} T^{2} \)
29 \( 1 + 54 T + p^{3} T^{2} \)
31 \( 1 + 271 T + p^{3} T^{2} \)
37 \( 1 - 314 T + p^{3} T^{2} \)
41 \( 1 + 360 T + p^{3} T^{2} \)
43 \( 1 + 163 T + p^{3} T^{2} \)
47 \( 1 - 522 T + p^{3} T^{2} \)
53 \( 1 + 36 T + p^{3} T^{2} \)
59 \( 1 - 126 T + p^{3} T^{2} \)
61 \( 1 - 47 T + p^{3} T^{2} \)
67 \( 1 + 343 T + p^{3} T^{2} \)
71 \( 1 + 1080 T + p^{3} T^{2} \)
73 \( 1 + 1054 T + p^{3} T^{2} \)
79 \( 1 + 568 T + p^{3} T^{2} \)
83 \( 1 - 1422 T + p^{3} T^{2} \)
89 \( 1 - 1440 T + p^{3} T^{2} \)
97 \( 1 + 439 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60393524382082800308740318364, −9.933335741707288806558710574607, −8.973556349541966096752627848731, −7.84215172273293491935428795961, −7.20901275437343674262649268955, −5.74768931925189855809602543867, −4.67087257949738426258614610369, −3.21995671807754163112183796659, −2.16935379911079178249702886515, 0, 2.16935379911079178249702886515, 3.21995671807754163112183796659, 4.67087257949738426258614610369, 5.74768931925189855809602543867, 7.20901275437343674262649268955, 7.84215172273293491935428795961, 8.973556349541966096752627848731, 9.933335741707288806558710574607, 10.60393524382082800308740318364

Graph of the $Z$-function along the critical line