L(s) = 1 | + 2.82i·3-s + 19·9-s + 70.7i·11-s − 90·17-s + 127. i·19-s + 125·25-s + 130. i·27-s − 200.·33-s + 522·41-s − 483. i·43-s − 343·49-s − 254. i·51-s − 360.·57-s − 325. i·59-s − 1.09e3i·67-s + ⋯ |
L(s) = 1 | + 0.544i·3-s + 0.703·9-s + 1.93i·11-s − 1.28·17-s + 1.53i·19-s + 25-s + 0.927i·27-s − 1.05·33-s + 1.98·41-s − 1.71i·43-s − 49-s − 0.698i·51-s − 0.836·57-s − 0.717i·59-s − 1.99i·67-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)−iΛ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
−i
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), −i)
|
Particular Values
L(2) |
≈ |
1.06949+1.06949i |
L(21) |
≈ |
1.06949+1.06949i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−2.82iT−27T2 |
| 5 | 1−125T2 |
| 7 | 1+343T2 |
| 11 | 1−70.7iT−1.33e3T2 |
| 13 | 1−2.19e3T2 |
| 17 | 1+90T+4.91e3T2 |
| 19 | 1−127.iT−6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1−2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1−5.06e4T2 |
| 41 | 1−522T+6.89e4T2 |
| 43 | 1+483.iT−7.95e4T2 |
| 47 | 1+1.03e5T2 |
| 53 | 1−1.48e5T2 |
| 59 | 1+325.iT−2.05e5T2 |
| 61 | 1−2.26e5T2 |
| 67 | 1+1.09e3iT−3.00e5T2 |
| 71 | 1+3.57e5T2 |
| 73 | 1−430T+3.89e5T2 |
| 79 | 1+4.93e5T2 |
| 83 | 1−681.iT−5.71e5T2 |
| 89 | 1+1.02e3T+7.04e5T2 |
| 97 | 1−1.91e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86613391569272739481506734153, −12.32145352280495509802959818033, −10.84174934320969070722998291614, −9.996913186961124265760855940422, −9.162901398394641071451612150416, −7.65244323634178350286896130015, −6.64124692147669390435640856039, −4.91964601291452429483575426540, −4.01134026870600113444691267406, −1.94800741825499369940914819677,
0.819017669647580252860004126787, 2.79117855394793387110811803056, 4.50670355090226620700501858155, 6.10170787573384112802259291180, 7.05336301730707782102125372761, 8.359883756521301568888731607607, 9.267765683929770566087148110692, 10.83996791860317420113309508985, 11.42036153002511934762883501937, 12.94212640267255725999332712455