L(s) = 1 | − 2.82i·3-s + 19·9-s − 70.7i·11-s − 90·17-s − 127. i·19-s + 125·25-s − 130. i·27-s − 200.·33-s + 522·41-s + 483. i·43-s − 343·49-s + 254. i·51-s − 360.·57-s + 325. i·59-s + 1.09e3i·67-s + ⋯ |
L(s) = 1 | − 0.544i·3-s + 0.703·9-s − 1.93i·11-s − 1.28·17-s − 1.53i·19-s + 25-s − 0.927i·27-s − 1.05·33-s + 1.98·41-s + 1.71i·43-s − 49-s + 0.698i·51-s − 0.836·57-s + 0.717i·59-s + 1.99i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.06949 - 1.06949i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06949 - 1.06949i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + 2.82iT - 27T^{2} \) |
| 5 | \( 1 - 125T^{2} \) |
| 7 | \( 1 + 343T^{2} \) |
| 11 | \( 1 + 70.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 2.19e3T^{2} \) |
| 17 | \( 1 + 90T + 4.91e3T^{2} \) |
| 19 | \( 1 + 127. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 1.21e4T^{2} \) |
| 29 | \( 1 - 2.43e4T^{2} \) |
| 31 | \( 1 + 2.97e4T^{2} \) |
| 37 | \( 1 - 5.06e4T^{2} \) |
| 41 | \( 1 - 522T + 6.89e4T^{2} \) |
| 43 | \( 1 - 483. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 1.03e5T^{2} \) |
| 53 | \( 1 - 1.48e5T^{2} \) |
| 59 | \( 1 - 325. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 2.26e5T^{2} \) |
| 67 | \( 1 - 1.09e3iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 - 430T + 3.89e5T^{2} \) |
| 79 | \( 1 + 4.93e5T^{2} \) |
| 83 | \( 1 + 681. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.02e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.91e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.94212640267255725999332712455, −11.42036153002511934762883501937, −10.83996791860317420113309508985, −9.267765683929770566087148110692, −8.359883756521301568888731607607, −7.05336301730707782102125372761, −6.10170787573384112802259291180, −4.50670355090226620700501858155, −2.79117855394793387110811803056, −0.819017669647580252860004126787,
1.94800741825499369940914819677, 4.01134026870600113444691267406, 4.91964601291452429483575426540, 6.64124692147669390435640856039, 7.65244323634178350286896130015, 9.162901398394641071451612150416, 9.996913186961124265760855940422, 10.84174934320969070722998291614, 12.32145352280495509802959818033, 12.86613391569272739481506734153