Properties

Label 2-2e10-1.1-c1-0-6
Degree $2$
Conductor $1024$
Sign $1$
Analytic cond. $8.17668$
Root an. cond. $2.85948$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·3-s + 1.41·5-s + 4·7-s + 5.00·9-s − 2.82·11-s + 4.24·13-s − 4.00·15-s − 2.82·19-s − 11.3·21-s + 4·23-s − 2.99·25-s − 5.65·27-s + 4.24·29-s − 8·31-s + 8.00·33-s + 5.65·35-s − 1.41·37-s − 12·39-s + 8·41-s + 2.82·43-s + 7.07·45-s + 8·47-s + 9·49-s + 1.41·53-s − 4.00·55-s + 8.00·57-s + 8.48·59-s + ⋯
L(s)  = 1  − 1.63·3-s + 0.632·5-s + 1.51·7-s + 1.66·9-s − 0.852·11-s + 1.17·13-s − 1.03·15-s − 0.648·19-s − 2.46·21-s + 0.834·23-s − 0.599·25-s − 1.08·27-s + 0.787·29-s − 1.43·31-s + 1.39·33-s + 0.956·35-s − 0.232·37-s − 1.92·39-s + 1.24·41-s + 0.431·43-s + 1.05·45-s + 1.16·47-s + 1.28·49-s + 0.194·53-s − 0.539·55-s + 1.05·57-s + 1.10·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1024\)    =    \(2^{10}\)
Sign: $1$
Analytic conductor: \(8.17668\)
Root analytic conductor: \(2.85948\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1024,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.227702610\)
\(L(\frac12)\) \(\approx\) \(1.227702610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 2.82T + 3T^{2} \)
5 \( 1 - 1.41T + 5T^{2} \)
7 \( 1 - 4T + 7T^{2} \)
11 \( 1 + 2.82T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 4.24T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 1.41T + 37T^{2} \)
41 \( 1 - 8T + 41T^{2} \)
43 \( 1 - 2.82T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 1.41T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 - 2.82T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 14.1T + 83T^{2} \)
89 \( 1 - 14T + 89T^{2} \)
97 \( 1 + 16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40000627801648629355129903157, −9.165395407110634334931372715013, −8.215731524710801455759809290426, −7.31993657711742158700153909802, −6.28240756348114202329790676381, −5.55993035971752438316645427630, −5.03929088109243831800682748329, −4.06757096190277316648267654994, −2.13041441718731757254450894943, −0.988172991455929312348833231208, 0.988172991455929312348833231208, 2.13041441718731757254450894943, 4.06757096190277316648267654994, 5.03929088109243831800682748329, 5.55993035971752438316645427630, 6.28240756348114202329790676381, 7.31993657711742158700153909802, 8.215731524710801455759809290426, 9.165395407110634334931372715013, 10.40000627801648629355129903157

Graph of the $Z$-function along the critical line