L(s) = 1 | + (0.483 − 0.385i)2-s + (0.602 − 0.137i)3-s + (−0.360 + 1.57i)4-s + (−2.40 − 3.01i)5-s + (0.238 − 0.298i)6-s + (0.497 + 2.18i)7-s + (0.970 + 2.01i)8-s + (−2.35 + 1.13i)9-s + (−2.32 − 0.530i)10-s + (0.599 − 1.24i)11-s + i·12-s + (−0.212 − 0.102i)13-s + (1.08 + 0.861i)14-s + (−1.86 − 1.48i)15-s + (−1.67 − 0.804i)16-s + 4.38i·17-s + ⋯ |
L(s) = 1 | + (0.341 − 0.272i)2-s + (0.347 − 0.0794i)3-s + (−0.180 + 0.788i)4-s + (−1.07 − 1.34i)5-s + (0.0972 − 0.121i)6-s + (0.188 + 0.823i)7-s + (0.343 + 0.712i)8-s + (−0.786 + 0.378i)9-s + (−0.734 − 0.167i)10-s + (0.180 − 0.375i)11-s + 0.288i·12-s + (−0.0589 − 0.0284i)13-s + (0.288 + 0.230i)14-s + (−0.480 − 0.383i)15-s + (−0.417 − 0.201i)16-s + 1.06i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.565 - 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.565 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.306850 + 0.582156i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.306850 + 0.582156i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-0.483 + 0.385i)T + (0.445 - 1.94i)T^{2} \) |
| 3 | \( 1 + (-0.602 + 0.137i)T + (2.70 - 1.30i)T^{2} \) |
| 5 | \( 1 + (2.40 + 3.01i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (-0.497 - 2.18i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (-0.599 + 1.24i)T + (-6.85 - 8.60i)T^{2} \) |
| 13 | \( 1 + (0.212 + 0.102i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 - 4.38iT - 17T^{2} \) |
| 19 | \( 1 + (4.73 + 1.08i)T + (17.1 + 8.24i)T^{2} \) |
| 23 | \( 1 + (0.770 - 0.966i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (7.88 - 6.29i)T + (6.89 - 30.2i)T^{2} \) |
| 37 | \( 1 + (2.04 + 4.24i)T + (-23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 - 3.85iT - 41T^{2} \) |
| 43 | \( 1 + (-5.65 - 4.51i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (3.03 - 6.30i)T + (-29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (1.24 + 1.56i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 - 6.09T + 59T^{2} \) |
| 61 | \( 1 + (-0.602 + 0.137i)T + (54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + (1.37 - 0.662i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (-9.43 - 4.54i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (10.7 + 8.54i)T + (16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 + (2.64 + 5.48i)T + (-49.2 + 61.7i)T^{2} \) |
| 83 | \( 1 + (-2.21 + 9.69i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (-3.68 + 2.93i)T + (19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 + (3.47 + 0.792i)T + (87.3 + 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90510885836201167127089234412, −9.111267277900372621937855259255, −8.645078161733281963902768104852, −8.252756480572769723726063788019, −7.45783737909508928540323009919, −5.84652687668380967870102493105, −4.95663990893561782618482424371, −4.10515849839985216788114537371, −3.23249779465590422312468948117, −1.93300539523557258505901627711,
0.26276323696761564905778988739, 2.38899737439150395543751648070, 3.70529036693392654659806046813, 4.21622049898435331068550929819, 5.54210754087037635665342341305, 6.65590921620961194637362262718, 7.13200685429224085106084946167, 8.007961975748728325412589834558, 9.118905893325525693517710241744, 10.05313508521739053352009388103