L(s) = 1 | + (−0.483 + 0.385i)2-s + (−0.602 + 0.137i)3-s + (−0.360 + 1.57i)4-s + (−2.40 − 3.01i)5-s + (0.238 − 0.298i)6-s + (0.497 + 2.18i)7-s + (−0.970 − 2.01i)8-s + (−2.35 + 1.13i)9-s + (2.32 + 0.530i)10-s + (−0.599 + 1.24i)11-s − i·12-s + (−0.212 − 0.102i)13-s + (−1.08 − 0.861i)14-s + (1.86 + 1.48i)15-s + (−1.67 − 0.804i)16-s − 4.38i·17-s + ⋯ |
L(s) = 1 | + (−0.341 + 0.272i)2-s + (−0.347 + 0.0794i)3-s + (−0.180 + 0.788i)4-s + (−1.07 − 1.34i)5-s + (0.0972 − 0.121i)6-s + (0.188 + 0.823i)7-s + (−0.343 − 0.712i)8-s + (−0.786 + 0.378i)9-s + (0.734 + 0.167i)10-s + (−0.180 + 0.375i)11-s − 0.288i·12-s + (−0.0589 − 0.0284i)13-s + (−0.288 − 0.230i)14-s + (0.480 + 0.383i)15-s + (−0.417 − 0.201i)16-s − 1.06i·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(0.959+0.280i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(0.959+0.280i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
0.959+0.280i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), 0.959+0.280i)
|
Particular Values
L(1) |
≈ |
0.622336−0.0891486i |
L(21) |
≈ |
0.622336−0.0891486i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(0.483−0.385i)T+(0.445−1.94i)T2 |
| 3 | 1+(0.602−0.137i)T+(2.70−1.30i)T2 |
| 5 | 1+(2.40+3.01i)T+(−1.11+4.87i)T2 |
| 7 | 1+(−0.497−2.18i)T+(−6.30+3.03i)T2 |
| 11 | 1+(0.599−1.24i)T+(−6.85−8.60i)T2 |
| 13 | 1+(0.212+0.102i)T+(8.10+10.1i)T2 |
| 17 | 1+4.38iT−17T2 |
| 19 | 1+(−4.73−1.08i)T+(17.1+8.24i)T2 |
| 23 | 1+(0.770−0.966i)T+(−5.11−22.4i)T2 |
| 31 | 1+(−7.88+6.29i)T+(6.89−30.2i)T2 |
| 37 | 1+(−2.04−4.24i)T+(−23.0+28.9i)T2 |
| 41 | 1+3.85iT−41T2 |
| 43 | 1+(5.65+4.51i)T+(9.56+41.9i)T2 |
| 47 | 1+(−3.03+6.30i)T+(−29.3−36.7i)T2 |
| 53 | 1+(1.24+1.56i)T+(−11.7+51.6i)T2 |
| 59 | 1−6.09T+59T2 |
| 61 | 1+(0.602−0.137i)T+(54.9−26.4i)T2 |
| 67 | 1+(1.37−0.662i)T+(41.7−52.3i)T2 |
| 71 | 1+(−9.43−4.54i)T+(44.2+55.5i)T2 |
| 73 | 1+(−10.7−8.54i)T+(16.2+71.1i)T2 |
| 79 | 1+(−2.64−5.48i)T+(−49.2+61.7i)T2 |
| 83 | 1+(−2.21+9.69i)T+(−74.7−36.0i)T2 |
| 89 | 1+(3.68−2.93i)T+(19.8−86.7i)T2 |
| 97 | 1+(−3.47−0.792i)T+(87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.832348261910190735039300449071, −9.100904833836167295903142168594, −8.275370589070684939729164820063, −7.990778815317527424748306812936, −6.97684769378808574787813411443, −5.48313722327801329065921412930, −4.92794029567890331250617640142, −3.90113115861377640154787546920, −2.65719264078806938186013227484, −0.51566302638163570410710263818,
0.889337828841345916381451073173, 2.75928883465164406320496346467, 3.68077664947873830120129260825, 4.87403521096344484593562204629, 6.10111557418630117440157518870, 6.68869530819481486162210016170, 7.75511910666771003929141104723, 8.443171301947526139891541334559, 9.631543538772115195636821705381, 10.57377543277009793512584360486