L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.866 + 0.5i)5-s + (−4.54 − 2.62i)7-s + 0.999·8-s − 0.999i·10-s + (−0.660 + 3.25i)11-s + (−5.39 + 3.11i)13-s + (4.54 − 2.62i)14-s + (−0.5 + 0.866i)16-s − 4.35·17-s + 0.748i·19-s + (0.866 + 0.499i)20-s + (−2.48 − 2.19i)22-s + (−2.87 + 1.66i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.387 + 0.223i)5-s + (−1.71 − 0.992i)7-s + 0.353·8-s − 0.316i·10-s + (−0.199 + 0.979i)11-s + (−1.49 + 0.863i)13-s + (1.21 − 0.701i)14-s + (−0.125 + 0.216i)16-s − 1.05·17-s + 0.171i·19-s + (0.193 + 0.111i)20-s + (−0.529 − 0.468i)22-s + (−0.599 + 0.346i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0767i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3902876969\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3902876969\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.660 - 3.25i)T \) |
good | 7 | \( 1 + (4.54 + 2.62i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (5.39 - 3.11i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.35T + 17T^{2} \) |
| 19 | \( 1 - 0.748iT - 19T^{2} \) |
| 23 | \( 1 + (2.87 - 1.66i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.20 + 9.01i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.83 - 4.90i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7.09T + 37T^{2} \) |
| 41 | \( 1 + (-2.75 - 4.76i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.41 + 0.817i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.640 + 0.369i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.46iT - 53T^{2} \) |
| 59 | \( 1 + (-0.877 + 0.506i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.800 + 0.462i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.821 + 1.42i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.56iT - 71T^{2} \) |
| 73 | \( 1 - 9.67iT - 73T^{2} \) |
| 79 | \( 1 + (10.6 + 6.17i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.86 + 4.95i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 8.41iT - 89T^{2} \) |
| 97 | \( 1 + (-8.16 + 14.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.779101874752859978152493537575, −7.75004953896342945825406114726, −7.07778895694224040672927037410, −6.78248730965632242597794076172, −6.04592218956387603579917010032, −4.62720510811688999925020879740, −4.30406358962813847507943222554, −3.13825158849944033787146139778, −2.08610465900797946656888747434, −0.28903218323267430316636982612,
0.48710291945562862809064214590, 2.38850742152672215371411610372, 2.90237000031967939115641281383, 3.67055282886158528200095003244, 4.84937537671092404683592755456, 5.64641554030814388770910492193, 6.52068761978786277189851543203, 7.24220066238063477403452872258, 8.286869983389997978216737324718, 8.828093701202418327480704179552