Properties

Label 2970.2.t.a.791.1
Level $2970$
Weight $2$
Character 2970.791
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 791.1
Character \(\chi\) \(=\) 2970.791
Dual form 2970.2.t.a.2771.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-4.54797 - 2.62577i) q^{7} +1.00000 q^{8} -1.00000i q^{10} +(-0.660985 + 3.25009i) q^{11} +(-5.39031 + 3.11210i) q^{13} +(4.54797 - 2.62577i) q^{14} +(-0.500000 + 0.866025i) q^{16} -4.35881 q^{17} +0.748972i q^{19} +(0.866025 + 0.500000i) q^{20} +(-2.48417 - 2.19748i) q^{22} +(-2.87695 + 1.66101i) q^{23} +(0.500000 - 0.866025i) q^{25} -6.22419i q^{26} +5.25154i q^{28} +(5.20486 - 9.01507i) q^{29} +(2.83113 + 4.90367i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.17940 - 3.77484i) q^{34} +5.25154 q^{35} -7.09847 q^{37} +(-0.648629 - 0.374486i) q^{38} +(-0.866025 + 0.500000i) q^{40} +(2.75133 + 4.76544i) q^{41} +(-1.41561 - 0.817304i) q^{43} +(3.14515 - 1.05262i) q^{44} -3.32202i q^{46} +(-0.640537 - 0.369814i) q^{47} +(10.2894 + 17.8217i) q^{49} +(0.500000 + 0.866025i) q^{50} +(5.39031 + 3.11210i) q^{52} -2.46463i q^{53} +(-1.05262 - 3.14515i) q^{55} +(-4.54797 - 2.62577i) q^{56} +(5.20486 + 9.01507i) q^{58} +(0.877216 - 0.506461i) q^{59} +(-0.800939 - 0.462422i) q^{61} -5.66227 q^{62} +1.00000 q^{64} +(3.11210 - 5.39031i) q^{65} +(-0.821341 - 1.42261i) q^{67} +(2.17940 + 3.77484i) q^{68} +(-2.62577 + 4.54797i) q^{70} -6.56094i q^{71} +9.67062i q^{73} +(3.54924 - 6.14746i) q^{74} +(0.648629 - 0.374486i) q^{76} +(11.5401 - 13.0457i) q^{77} +(-10.6885 - 6.17100i) q^{79} -1.00000i q^{80} -5.50266 q^{82} +(2.86275 - 4.95842i) q^{83} +(3.77484 - 2.17940i) q^{85} +(1.41561 - 0.817304i) q^{86} +(-0.660985 + 3.25009i) q^{88} -8.41930i q^{89} +32.6866 q^{91} +(2.87695 + 1.66101i) q^{92} +(0.640537 - 0.369814i) q^{94} +(-0.374486 - 0.648629i) q^{95} +(8.16763 - 14.1467i) q^{97} -20.5787 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} + 12 q^{11} - 24 q^{13} - 24 q^{16} - 12 q^{17} - 6 q^{22} - 36 q^{23} + 24 q^{25} - 24 q^{32} + 6 q^{34} + 6 q^{38} - 6 q^{41} - 30 q^{43} - 6 q^{44} + 24 q^{49} + 24 q^{50}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −4.54797 2.62577i −1.71897 0.992448i −0.920817 0.389995i \(-0.872477\pi\)
−0.798154 0.602453i \(-0.794190\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −0.660985 + 3.25009i −0.199295 + 0.979940i
\(12\) 0 0
\(13\) −5.39031 + 3.11210i −1.49500 + 0.863140i −0.999984 0.00574230i \(-0.998172\pi\)
−0.495019 + 0.868882i \(0.664839\pi\)
\(14\) 4.54797 2.62577i 1.21550 0.701767i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −4.35881 −1.05717 −0.528583 0.848881i \(-0.677277\pi\)
−0.528583 + 0.848881i \(0.677277\pi\)
\(18\) 0 0
\(19\) 0.748972i 0.171826i 0.996303 + 0.0859130i \(0.0273807\pi\)
−0.996303 + 0.0859130i \(0.972619\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0 0
\(22\) −2.48417 2.19748i −0.529627 0.468503i
\(23\) −2.87695 + 1.66101i −0.599886 + 0.346344i −0.768997 0.639253i \(-0.779244\pi\)
0.169111 + 0.985597i \(0.445910\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 6.22419i 1.22066i
\(27\) 0 0
\(28\) 5.25154i 0.992448i
\(29\) 5.20486 9.01507i 0.966517 1.67406i 0.261036 0.965329i \(-0.415936\pi\)
0.705482 0.708728i \(-0.250731\pi\)
\(30\) 0 0
\(31\) 2.83113 + 4.90367i 0.508487 + 0.880725i 0.999952 + 0.00982755i \(0.00312826\pi\)
−0.491465 + 0.870897i \(0.663538\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 2.17940 3.77484i 0.373765 0.647380i
\(35\) 5.25154 0.887673
\(36\) 0 0
\(37\) −7.09847 −1.16698 −0.583491 0.812120i \(-0.698314\pi\)
−0.583491 + 0.812120i \(0.698314\pi\)
\(38\) −0.648629 0.374486i −0.105222 0.0607497i
\(39\) 0 0
\(40\) −0.866025 + 0.500000i −0.136931 + 0.0790569i
\(41\) 2.75133 + 4.76544i 0.429686 + 0.744237i 0.996845 0.0793706i \(-0.0252910\pi\)
−0.567160 + 0.823608i \(0.691958\pi\)
\(42\) 0 0
\(43\) −1.41561 0.817304i −0.215879 0.124638i 0.388162 0.921591i \(-0.373110\pi\)
−0.604041 + 0.796954i \(0.706444\pi\)
\(44\) 3.14515 1.05262i 0.474150 0.158688i
\(45\) 0 0
\(46\) 3.32202i 0.489805i
\(47\) −0.640537 0.369814i −0.0934319 0.0539429i 0.452556 0.891736i \(-0.350512\pi\)
−0.545988 + 0.837793i \(0.683846\pi\)
\(48\) 0 0
\(49\) 10.2894 + 17.8217i 1.46991 + 2.54595i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 5.39031 + 3.11210i 0.747501 + 0.431570i
\(53\) 2.46463i 0.338542i −0.985570 0.169271i \(-0.945859\pi\)
0.985570 0.169271i \(-0.0541414\pi\)
\(54\) 0 0
\(55\) −1.05262 3.14515i −0.141935 0.424093i
\(56\) −4.54797 2.62577i −0.607748 0.350884i
\(57\) 0 0
\(58\) 5.20486 + 9.01507i 0.683431 + 1.18374i
\(59\) 0.877216 0.506461i 0.114204 0.0659356i −0.441810 0.897109i \(-0.645663\pi\)
0.556014 + 0.831173i \(0.312330\pi\)
\(60\) 0 0
\(61\) −0.800939 0.462422i −0.102550 0.0592071i 0.447848 0.894110i \(-0.352191\pi\)
−0.550398 + 0.834903i \(0.685524\pi\)
\(62\) −5.66227 −0.719109
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.11210 5.39031i 0.386008 0.668585i
\(66\) 0 0
\(67\) −0.821341 1.42261i −0.100343 0.173799i 0.811483 0.584376i \(-0.198661\pi\)
−0.911826 + 0.410577i \(0.865327\pi\)
\(68\) 2.17940 + 3.77484i 0.264292 + 0.457766i
\(69\) 0 0
\(70\) −2.62577 + 4.54797i −0.313840 + 0.543586i
\(71\) 6.56094i 0.778640i −0.921103 0.389320i \(-0.872710\pi\)
0.921103 0.389320i \(-0.127290\pi\)
\(72\) 0 0
\(73\) 9.67062i 1.13186i 0.824453 + 0.565930i \(0.191483\pi\)
−0.824453 + 0.565930i \(0.808517\pi\)
\(74\) 3.54924 6.14746i 0.412590 0.714627i
\(75\) 0 0
\(76\) 0.648629 0.374486i 0.0744028 0.0429565i
\(77\) 11.5401 13.0457i 1.31512 1.48670i
\(78\) 0 0
\(79\) −10.6885 6.17100i −1.20255 0.694292i −0.241427 0.970419i \(-0.577616\pi\)
−0.961121 + 0.276127i \(0.910949\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) −5.50266 −0.607667
\(83\) 2.86275 4.95842i 0.314227 0.544258i −0.665046 0.746803i \(-0.731588\pi\)
0.979273 + 0.202545i \(0.0649213\pi\)
\(84\) 0 0
\(85\) 3.77484 2.17940i 0.409439 0.236390i
\(86\) 1.41561 0.817304i 0.152649 0.0881321i
\(87\) 0 0
\(88\) −0.660985 + 3.25009i −0.0704613 + 0.346461i
\(89\) 8.41930i 0.892444i −0.894922 0.446222i \(-0.852769\pi\)
0.894922 0.446222i \(-0.147231\pi\)
\(90\) 0 0
\(91\) 32.6866 3.42649
\(92\) 2.87695 + 1.66101i 0.299943 + 0.173172i
\(93\) 0 0
\(94\) 0.640537 0.369814i 0.0660663 0.0381434i
\(95\) −0.374486 0.648629i −0.0384215 0.0665479i
\(96\) 0 0
\(97\) 8.16763 14.1467i 0.829297 1.43638i −0.0692933 0.997596i \(-0.522074\pi\)
0.898590 0.438788i \(-0.144592\pi\)
\(98\) −20.5787 −2.07876
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −3.41322 + 5.91188i −0.339628 + 0.588254i −0.984363 0.176153i \(-0.943635\pi\)
0.644734 + 0.764407i \(0.276968\pi\)
\(102\) 0 0
\(103\) 0.536621 + 0.929456i 0.0528749 + 0.0915820i 0.891251 0.453510i \(-0.149828\pi\)
−0.838377 + 0.545092i \(0.816495\pi\)
\(104\) −5.39031 + 3.11210i −0.528563 + 0.305166i
\(105\) 0 0
\(106\) 2.13443 + 1.23231i 0.207314 + 0.119693i
\(107\) 13.1135 1.26773 0.633863 0.773445i \(-0.281468\pi\)
0.633863 + 0.773445i \(0.281468\pi\)
\(108\) 0 0
\(109\) 12.7274i 1.21906i −0.792762 0.609531i \(-0.791358\pi\)
0.792762 0.609531i \(-0.208642\pi\)
\(110\) 3.25009 + 0.660985i 0.309884 + 0.0630225i
\(111\) 0 0
\(112\) 4.54797 2.62577i 0.429743 0.248112i
\(113\) 6.01231 3.47121i 0.565591 0.326544i −0.189796 0.981824i \(-0.560783\pi\)
0.755386 + 0.655280i \(0.227449\pi\)
\(114\) 0 0
\(115\) 1.66101 2.87695i 0.154890 0.268277i
\(116\) −10.4097 −0.966517
\(117\) 0 0
\(118\) 1.01292i 0.0932470i
\(119\) 19.8237 + 11.4452i 1.81724 + 1.04918i
\(120\) 0 0
\(121\) −10.1262 4.29653i −0.920563 0.390593i
\(122\) 0.800939 0.462422i 0.0725136 0.0418657i
\(123\) 0 0
\(124\) 2.83113 4.90367i 0.254243 0.440362i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 2.60810i 0.231432i 0.993282 + 0.115716i \(0.0369162\pi\)
−0.993282 + 0.115716i \(0.963084\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 3.11210 + 5.39031i 0.272949 + 0.472761i
\(131\) −0.604819 1.04758i −0.0528433 0.0915273i 0.838394 0.545065i \(-0.183495\pi\)
−0.891237 + 0.453538i \(0.850162\pi\)
\(132\) 0 0
\(133\) 1.96663 3.40630i 0.170528 0.295364i
\(134\) 1.64268 0.141906
\(135\) 0 0
\(136\) −4.35881 −0.373765
\(137\) 14.8740 + 8.58754i 1.27078 + 0.733683i 0.975134 0.221616i \(-0.0711332\pi\)
0.295642 + 0.955299i \(0.404467\pi\)
\(138\) 0 0
\(139\) 10.5934 6.11608i 0.898517 0.518759i 0.0217983 0.999762i \(-0.493061\pi\)
0.876719 + 0.481003i \(0.159728\pi\)
\(140\) −2.62577 4.54797i −0.221918 0.384374i
\(141\) 0 0
\(142\) 5.68194 + 3.28047i 0.476818 + 0.275291i
\(143\) −6.55168 19.5760i −0.547879 1.63703i
\(144\) 0 0
\(145\) 10.4097i 0.864479i
\(146\) −8.37500 4.83531i −0.693120 0.400173i
\(147\) 0 0
\(148\) 3.54924 + 6.14746i 0.291745 + 0.505318i
\(149\) 2.09557 + 3.62963i 0.171676 + 0.297351i 0.939006 0.343901i \(-0.111749\pi\)
−0.767330 + 0.641252i \(0.778415\pi\)
\(150\) 0 0
\(151\) −9.01876 5.20698i −0.733936 0.423738i 0.0859241 0.996302i \(-0.472616\pi\)
−0.819860 + 0.572563i \(0.805949\pi\)
\(152\) 0.748972i 0.0607497i
\(153\) 0 0
\(154\) 5.52786 + 16.5169i 0.445447 + 1.33097i
\(155\) −4.90367 2.83113i −0.393872 0.227402i
\(156\) 0 0
\(157\) 5.55695 + 9.62492i 0.443493 + 0.768152i 0.997946 0.0640627i \(-0.0204058\pi\)
−0.554453 + 0.832215i \(0.687072\pi\)
\(158\) 10.6885 6.17100i 0.850330 0.490938i
\(159\) 0 0
\(160\) 0.866025 + 0.500000i 0.0684653 + 0.0395285i
\(161\) 17.4457 1.37491
\(162\) 0 0
\(163\) −2.63238 −0.206184 −0.103092 0.994672i \(-0.532874\pi\)
−0.103092 + 0.994672i \(0.532874\pi\)
\(164\) 2.75133 4.76544i 0.214843 0.372119i
\(165\) 0 0
\(166\) 2.86275 + 4.95842i 0.222192 + 0.384848i
\(167\) 2.05504 + 3.55943i 0.159024 + 0.275437i 0.934517 0.355919i \(-0.115832\pi\)
−0.775493 + 0.631356i \(0.782499\pi\)
\(168\) 0 0
\(169\) 12.8703 22.2920i 0.990021 1.71477i
\(170\) 4.35881i 0.334305i
\(171\) 0 0
\(172\) 1.63461i 0.124638i
\(173\) 2.40803 4.17083i 0.183079 0.317102i −0.759849 0.650100i \(-0.774727\pi\)
0.942928 + 0.332998i \(0.108060\pi\)
\(174\) 0 0
\(175\) −4.54797 + 2.62577i −0.343794 + 0.198490i
\(176\) −2.48417 2.19748i −0.187251 0.165641i
\(177\) 0 0
\(178\) 7.29133 + 4.20965i 0.546508 + 0.315527i
\(179\) 11.7239i 0.876288i 0.898905 + 0.438144i \(0.144364\pi\)
−0.898905 + 0.438144i \(0.855636\pi\)
\(180\) 0 0
\(181\) −11.5905 −0.861515 −0.430757 0.902468i \(-0.641754\pi\)
−0.430757 + 0.902468i \(0.641754\pi\)
\(182\) −16.3433 + 28.3074i −1.21145 + 2.09829i
\(183\) 0 0
\(184\) −2.87695 + 1.66101i −0.212092 + 0.122451i
\(185\) 6.14746 3.54924i 0.451970 0.260945i
\(186\) 0 0
\(187\) 2.88111 14.1665i 0.210688 1.03596i
\(188\) 0.739628i 0.0539429i
\(189\) 0 0
\(190\) 0.748972 0.0543362
\(191\) 5.16248 + 2.98056i 0.373544 + 0.215666i 0.675005 0.737813i \(-0.264141\pi\)
−0.301462 + 0.953478i \(0.597475\pi\)
\(192\) 0 0
\(193\) 8.79421 5.07734i 0.633021 0.365475i −0.148900 0.988852i \(-0.547573\pi\)
0.781921 + 0.623377i \(0.214240\pi\)
\(194\) 8.16763 + 14.1467i 0.586402 + 1.01568i
\(195\) 0 0
\(196\) 10.2894 17.8217i 0.734954 1.27298i
\(197\) 25.8739 1.84344 0.921721 0.387854i \(-0.126784\pi\)
0.921721 + 0.387854i \(0.126784\pi\)
\(198\) 0 0
\(199\) −19.0396 −1.34968 −0.674842 0.737962i \(-0.735788\pi\)
−0.674842 + 0.737962i \(0.735788\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) −3.41322 5.91188i −0.240154 0.415958i
\(203\) −47.3431 + 27.3335i −3.32283 + 1.91844i
\(204\) 0 0
\(205\) −4.76544 2.75133i −0.332833 0.192161i
\(206\) −1.07324 −0.0747764
\(207\) 0 0
\(208\) 6.22419i 0.431570i
\(209\) −2.43423 0.495060i −0.168379 0.0342440i
\(210\) 0 0
\(211\) −14.2014 + 8.19916i −0.977662 + 0.564454i −0.901564 0.432647i \(-0.857580\pi\)
−0.0760987 + 0.997100i \(0.524246\pi\)
\(212\) −2.13443 + 1.23231i −0.146593 + 0.0846356i
\(213\) 0 0
\(214\) −6.55673 + 11.3566i −0.448209 + 0.776320i
\(215\) 1.63461 0.111479
\(216\) 0 0
\(217\) 29.7357i 2.01859i
\(218\) 11.0222 + 6.36369i 0.746520 + 0.431004i
\(219\) 0 0
\(220\) −2.19748 + 2.48417i −0.148154 + 0.167483i
\(221\) 23.4953 13.5650i 1.58047 0.912483i
\(222\) 0 0
\(223\) −10.9519 + 18.9692i −0.733393 + 1.27027i 0.222032 + 0.975039i \(0.428731\pi\)
−0.955425 + 0.295235i \(0.904602\pi\)
\(224\) 5.25154i 0.350884i
\(225\) 0 0
\(226\) 6.94242i 0.461803i
\(227\) −8.93371 + 15.4736i −0.592951 + 1.02702i 0.400881 + 0.916130i \(0.368704\pi\)
−0.993832 + 0.110892i \(0.964629\pi\)
\(228\) 0 0
\(229\) −4.31866 7.48013i −0.285385 0.494301i 0.687318 0.726357i \(-0.258788\pi\)
−0.972702 + 0.232056i \(0.925455\pi\)
\(230\) 1.66101 + 2.87695i 0.109524 + 0.189700i
\(231\) 0 0
\(232\) 5.20486 9.01507i 0.341715 0.591869i
\(233\) −16.6152 −1.08850 −0.544250 0.838923i \(-0.683186\pi\)
−0.544250 + 0.838923i \(0.683186\pi\)
\(234\) 0 0
\(235\) 0.739628 0.0482480
\(236\) −0.877216 0.506461i −0.0571019 0.0329678i
\(237\) 0 0
\(238\) −19.8237 + 11.4452i −1.28498 + 0.741885i
\(239\) 6.12388 + 10.6069i 0.396121 + 0.686102i 0.993244 0.116048i \(-0.0370228\pi\)
−0.597123 + 0.802150i \(0.703689\pi\)
\(240\) 0 0
\(241\) 13.4650 + 7.77403i 0.867358 + 0.500770i 0.866469 0.499230i \(-0.166384\pi\)
0.000888829 1.00000i \(0.499717\pi\)
\(242\) 8.78400 6.62128i 0.564657 0.425632i
\(243\) 0 0
\(244\) 0.924844i 0.0592071i
\(245\) −17.8217 10.2894i −1.13859 0.657363i
\(246\) 0 0
\(247\) −2.33087 4.03719i −0.148310 0.256880i
\(248\) 2.83113 + 4.90367i 0.179777 + 0.311383i
\(249\) 0 0
\(250\) −0.866025 0.500000i −0.0547723 0.0316228i
\(251\) 6.72650i 0.424573i −0.977207 0.212286i \(-0.931909\pi\)
0.977207 0.212286i \(-0.0680910\pi\)
\(252\) 0 0
\(253\) −3.49681 10.4483i −0.219842 0.656876i
\(254\) −2.25868 1.30405i −0.141722 0.0818234i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.78608 5.64999i 0.610439 0.352437i −0.162698 0.986676i \(-0.552020\pi\)
0.773137 + 0.634239i \(0.218686\pi\)
\(258\) 0 0
\(259\) 32.2836 + 18.6390i 2.00601 + 1.15817i
\(260\) −6.22419 −0.386008
\(261\) 0 0
\(262\) 1.20964 0.0747317
\(263\) 2.98399 5.16843i 0.184001 0.318699i −0.759239 0.650812i \(-0.774428\pi\)
0.943239 + 0.332114i \(0.107762\pi\)
\(264\) 0 0
\(265\) 1.23231 + 2.13443i 0.0757004 + 0.131117i
\(266\) 1.96663 + 3.40630i 0.120582 + 0.208854i
\(267\) 0 0
\(268\) −0.821341 + 1.42261i −0.0501714 + 0.0868994i
\(269\) 26.2484i 1.60039i 0.599738 + 0.800197i \(0.295272\pi\)
−0.599738 + 0.800197i \(0.704728\pi\)
\(270\) 0 0
\(271\) 7.60818i 0.462164i 0.972934 + 0.231082i \(0.0742266\pi\)
−0.972934 + 0.231082i \(0.925773\pi\)
\(272\) 2.17940 3.77484i 0.132146 0.228883i
\(273\) 0 0
\(274\) −14.8740 + 8.58754i −0.898574 + 0.518792i
\(275\) 2.48417 + 2.19748i 0.149801 + 0.132513i
\(276\) 0 0
\(277\) 8.68513 + 5.01436i 0.521839 + 0.301284i 0.737687 0.675143i \(-0.235918\pi\)
−0.215848 + 0.976427i \(0.569252\pi\)
\(278\) 12.2322i 0.733636i
\(279\) 0 0
\(280\) 5.25154 0.313840
\(281\) −0.989858 + 1.71448i −0.0590500 + 0.102278i −0.894039 0.447989i \(-0.852140\pi\)
0.834989 + 0.550266i \(0.185474\pi\)
\(282\) 0 0
\(283\) −19.9164 + 11.4987i −1.18391 + 0.683530i −0.956915 0.290367i \(-0.906223\pi\)
−0.226993 + 0.973896i \(0.572889\pi\)
\(284\) −5.68194 + 3.28047i −0.337161 + 0.194660i
\(285\) 0 0
\(286\) 20.2292 + 4.11410i 1.19618 + 0.243272i
\(287\) 28.8975i 1.70576i
\(288\) 0 0
\(289\) 1.99921 0.117601
\(290\) −9.01507 5.20486i −0.529383 0.305640i
\(291\) 0 0
\(292\) 8.37500 4.83531i 0.490110 0.282965i
\(293\) −4.62455 8.00995i −0.270169 0.467946i 0.698736 0.715380i \(-0.253746\pi\)
−0.968905 + 0.247433i \(0.920413\pi\)
\(294\) 0 0
\(295\) −0.506461 + 0.877216i −0.0294873 + 0.0510735i
\(296\) −7.09847 −0.412590
\(297\) 0 0
\(298\) −4.19114 −0.242786
\(299\) 10.3384 17.9067i 0.597887 1.03557i
\(300\) 0 0
\(301\) 4.29211 + 7.43415i 0.247393 + 0.428497i
\(302\) 9.01876 5.20698i 0.518971 0.299628i
\(303\) 0 0
\(304\) −0.648629 0.374486i −0.0372014 0.0214783i
\(305\) 0.924844 0.0529564
\(306\) 0 0
\(307\) 4.44897i 0.253916i 0.991908 + 0.126958i \(0.0405214\pi\)
−0.991908 + 0.126958i \(0.959479\pi\)
\(308\) −17.0680 3.47119i −0.972540 0.197790i
\(309\) 0 0
\(310\) 4.90367 2.83113i 0.278510 0.160798i
\(311\) 16.4416 9.49258i 0.932319 0.538275i 0.0447747 0.998997i \(-0.485743\pi\)
0.887544 + 0.460723i \(0.152410\pi\)
\(312\) 0 0
\(313\) 11.2352 19.4599i 0.635049 1.09994i −0.351456 0.936205i \(-0.614313\pi\)
0.986505 0.163733i \(-0.0523535\pi\)
\(314\) −11.1139 −0.627194
\(315\) 0 0
\(316\) 12.3420i 0.694292i
\(317\) 7.53086 + 4.34795i 0.422975 + 0.244205i 0.696350 0.717703i \(-0.254806\pi\)
−0.273374 + 0.961908i \(0.588140\pi\)
\(318\) 0 0
\(319\) 25.8595 + 22.8751i 1.44785 + 1.28076i
\(320\) −0.866025 + 0.500000i −0.0484123 + 0.0279508i
\(321\) 0 0
\(322\) −8.72286 + 15.1084i −0.486106 + 0.841960i
\(323\) 3.26463i 0.181649i
\(324\) 0 0
\(325\) 6.22419i 0.345256i
\(326\) 1.31619 2.27971i 0.0728971 0.126261i
\(327\) 0 0
\(328\) 2.75133 + 4.76544i 0.151917 + 0.263128i
\(329\) 1.94209 + 3.36381i 0.107071 + 0.185453i
\(330\) 0 0
\(331\) −11.0808 + 19.1925i −0.609054 + 1.05491i 0.382343 + 0.924021i \(0.375117\pi\)
−0.991397 + 0.130892i \(0.958216\pi\)
\(332\) −5.72549 −0.314227
\(333\) 0 0
\(334\) −4.11008 −0.224893
\(335\) 1.42261 + 0.821341i 0.0777252 + 0.0448747i
\(336\) 0 0
\(337\) −8.20371 + 4.73641i −0.446884 + 0.258009i −0.706513 0.707700i \(-0.749733\pi\)
0.259629 + 0.965708i \(0.416400\pi\)
\(338\) 12.8703 + 22.2920i 0.700051 + 1.21252i
\(339\) 0 0
\(340\) −3.77484 2.17940i −0.204719 0.118195i
\(341\) −17.8087 + 5.96019i −0.964396 + 0.322763i
\(342\) 0 0
\(343\) 71.3092i 3.85033i
\(344\) −1.41561 0.817304i −0.0763247 0.0440661i
\(345\) 0 0
\(346\) 2.40803 + 4.17083i 0.129456 + 0.224225i
\(347\) −14.1436 24.4975i −0.759269 1.31509i −0.943224 0.332158i \(-0.892223\pi\)
0.183955 0.982935i \(-0.441110\pi\)
\(348\) 0 0
\(349\) 21.0255 + 12.1391i 1.12547 + 0.649790i 0.942792 0.333382i \(-0.108190\pi\)
0.182678 + 0.983173i \(0.441523\pi\)
\(350\) 5.25154i 0.280707i
\(351\) 0 0
\(352\) 3.14515 1.05262i 0.167637 0.0561046i
\(353\) 10.3031 + 5.94847i 0.548377 + 0.316605i 0.748467 0.663172i \(-0.230790\pi\)
−0.200090 + 0.979777i \(0.564124\pi\)
\(354\) 0 0
\(355\) 3.28047 + 5.68194i 0.174109 + 0.301566i
\(356\) −7.29133 + 4.20965i −0.386439 + 0.223111i
\(357\) 0 0
\(358\) −10.1532 5.86196i −0.536614 0.309814i
\(359\) −14.4825 −0.764359 −0.382180 0.924088i \(-0.624826\pi\)
−0.382180 + 0.924088i \(0.624826\pi\)
\(360\) 0 0
\(361\) 18.4390 0.970476
\(362\) 5.79525 10.0377i 0.304591 0.527568i
\(363\) 0 0
\(364\) −16.3433 28.3074i −0.856622 1.48371i
\(365\) −4.83531 8.37500i −0.253092 0.438368i
\(366\) 0 0
\(367\) 4.14790 7.18437i 0.216519 0.375021i −0.737223 0.675650i \(-0.763863\pi\)
0.953741 + 0.300629i \(0.0971965\pi\)
\(368\) 3.32202i 0.173172i
\(369\) 0 0
\(370\) 7.09847i 0.369032i
\(371\) −6.47155 + 11.2090i −0.335986 + 0.581945i
\(372\) 0 0
\(373\) 10.5518 6.09206i 0.546349 0.315435i −0.201299 0.979530i \(-0.564516\pi\)
0.747648 + 0.664095i \(0.231183\pi\)
\(374\) 10.8280 + 9.57838i 0.559904 + 0.495286i
\(375\) 0 0
\(376\) −0.640537 0.369814i −0.0330332 0.0190717i
\(377\) 64.7920i 3.33696i
\(378\) 0 0
\(379\) −22.9047 −1.17653 −0.588267 0.808666i \(-0.700190\pi\)
−0.588267 + 0.808666i \(0.700190\pi\)
\(380\) −0.374486 + 0.648629i −0.0192107 + 0.0332740i
\(381\) 0 0
\(382\) −5.16248 + 2.98056i −0.264135 + 0.152499i
\(383\) −16.5551 + 9.55806i −0.845924 + 0.488394i −0.859273 0.511517i \(-0.829084\pi\)
0.0133497 + 0.999911i \(0.495751\pi\)
\(384\) 0 0
\(385\) −3.47119 + 17.0680i −0.176908 + 0.869866i
\(386\) 10.1547i 0.516859i
\(387\) 0 0
\(388\) −16.3353 −0.829297
\(389\) −26.6198 15.3689i −1.34968 0.779235i −0.361472 0.932383i \(-0.617726\pi\)
−0.988203 + 0.153148i \(0.951059\pi\)
\(390\) 0 0
\(391\) 12.5401 7.24002i 0.634179 0.366143i
\(392\) 10.2894 + 17.8217i 0.519691 + 0.900131i
\(393\) 0 0
\(394\) −12.9370 + 22.4075i −0.651755 + 1.12887i
\(395\) 12.3420 0.620993
\(396\) 0 0
\(397\) −19.1437 −0.960796 −0.480398 0.877051i \(-0.659508\pi\)
−0.480398 + 0.877051i \(0.659508\pi\)
\(398\) 9.51981 16.4888i 0.477185 0.826509i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 1.63962 0.946638i 0.0818789 0.0472728i −0.458502 0.888694i \(-0.651614\pi\)
0.540380 + 0.841421i \(0.318280\pi\)
\(402\) 0 0
\(403\) −30.5214 17.6215i −1.52038 0.877790i
\(404\) 6.82645 0.339628
\(405\) 0 0
\(406\) 54.6670i 2.71308i
\(407\) 4.69199 23.0707i 0.232573 1.14357i
\(408\) 0 0
\(409\) −3.27154 + 1.88883i −0.161767 + 0.0933965i −0.578698 0.815542i \(-0.696439\pi\)
0.416931 + 0.908938i \(0.363106\pi\)
\(410\) 4.76544 2.75133i 0.235349 0.135879i
\(411\) 0 0
\(412\) 0.536621 0.929456i 0.0264374 0.0457910i
\(413\) −5.31940 −0.261751
\(414\) 0 0
\(415\) 5.72549i 0.281053i
\(416\) 5.39031 + 3.11210i 0.264282 + 0.152583i
\(417\) 0 0
\(418\) 1.64585 1.86057i 0.0805011 0.0910036i
\(419\) 16.4092 9.47385i 0.801641 0.462828i −0.0424036 0.999101i \(-0.513502\pi\)
0.844045 + 0.536273i \(0.180168\pi\)
\(420\) 0 0
\(421\) 4.89817 8.48389i 0.238722 0.413479i −0.721626 0.692284i \(-0.756605\pi\)
0.960348 + 0.278804i \(0.0899381\pi\)
\(422\) 16.3983i 0.798258i
\(423\) 0 0
\(424\) 2.46463i 0.119693i
\(425\) −2.17940 + 3.77484i −0.105717 + 0.183107i
\(426\) 0 0
\(427\) 2.42843 + 4.20616i 0.117520 + 0.203551i
\(428\) −6.55673 11.3566i −0.316931 0.548941i
\(429\) 0 0
\(430\) −0.817304 + 1.41561i −0.0394139 + 0.0682669i
\(431\) 20.6446 0.994417 0.497209 0.867631i \(-0.334358\pi\)
0.497209 + 0.867631i \(0.334358\pi\)
\(432\) 0 0
\(433\) 19.8184 0.952411 0.476206 0.879334i \(-0.342012\pi\)
0.476206 + 0.879334i \(0.342012\pi\)
\(434\) 25.7518 + 14.8678i 1.23613 + 0.713678i
\(435\) 0 0
\(436\) −11.0222 + 6.36369i −0.527870 + 0.304766i
\(437\) −1.24405 2.15476i −0.0595109 0.103076i
\(438\) 0 0
\(439\) 16.5483 + 9.55418i 0.789809 + 0.455996i 0.839895 0.542749i \(-0.182616\pi\)
−0.0500866 + 0.998745i \(0.515950\pi\)
\(440\) −1.05262 3.14515i −0.0501815 0.149939i
\(441\) 0 0
\(442\) 27.1301i 1.29045i
\(443\) 0.733684 + 0.423593i 0.0348584 + 0.0201255i 0.517328 0.855787i \(-0.326927\pi\)
−0.482470 + 0.875913i \(0.660260\pi\)
\(444\) 0 0
\(445\) 4.20965 + 7.29133i 0.199556 + 0.345642i
\(446\) −10.9519 18.9692i −0.518587 0.898219i
\(447\) 0 0
\(448\) −4.54797 2.62577i −0.214871 0.124056i
\(449\) 30.6594i 1.44690i −0.690374 0.723452i \(-0.742554\pi\)
0.690374 0.723452i \(-0.257446\pi\)
\(450\) 0 0
\(451\) −17.3067 + 5.79219i −0.814942 + 0.272744i
\(452\) −6.01231 3.47121i −0.282795 0.163272i
\(453\) 0 0
\(454\) −8.93371 15.4736i −0.419280 0.726214i
\(455\) −28.3074 + 16.3433i −1.32707 + 0.766186i
\(456\) 0 0
\(457\) 34.5586 + 19.9524i 1.61658 + 0.933333i 0.987796 + 0.155754i \(0.0497808\pi\)
0.628785 + 0.777579i \(0.283553\pi\)
\(458\) 8.63731 0.403595
\(459\) 0 0
\(460\) −3.32202 −0.154890
\(461\) 20.0031 34.6465i 0.931639 1.61365i 0.151120 0.988515i \(-0.451712\pi\)
0.780520 0.625131i \(-0.214955\pi\)
\(462\) 0 0
\(463\) 0.670343 + 1.16107i 0.0311535 + 0.0539594i 0.881182 0.472778i \(-0.156749\pi\)
−0.850028 + 0.526737i \(0.823415\pi\)
\(464\) 5.20486 + 9.01507i 0.241629 + 0.418514i
\(465\) 0 0
\(466\) 8.30762 14.3892i 0.384843 0.666567i
\(467\) 4.43805i 0.205369i 0.994714 + 0.102684i \(0.0327431\pi\)
−0.994714 + 0.102684i \(0.967257\pi\)
\(468\) 0 0
\(469\) 8.62662i 0.398340i
\(470\) −0.369814 + 0.640537i −0.0170583 + 0.0295458i
\(471\) 0 0
\(472\) 0.877216 0.506461i 0.0403771 0.0233117i
\(473\) 3.59201 4.06064i 0.165161 0.186709i
\(474\) 0 0
\(475\) 0.648629 + 0.374486i 0.0297611 + 0.0171826i
\(476\) 22.8905i 1.04918i
\(477\) 0 0
\(478\) −12.2478 −0.560200
\(479\) −10.8806 + 18.8457i −0.497145 + 0.861080i −0.999995 0.00329348i \(-0.998952\pi\)
0.502850 + 0.864374i \(0.332285\pi\)
\(480\) 0 0
\(481\) 38.2629 22.0911i 1.74464 1.00727i
\(482\) −13.4650 + 7.77403i −0.613315 + 0.354098i
\(483\) 0 0
\(484\) 1.34220 + 10.9178i 0.0610090 + 0.496264i
\(485\) 16.3353i 0.741746i
\(486\) 0 0
\(487\) −2.19251 −0.0993520 −0.0496760 0.998765i \(-0.515819\pi\)
−0.0496760 + 0.998765i \(0.515819\pi\)
\(488\) −0.800939 0.462422i −0.0362568 0.0209329i
\(489\) 0 0
\(490\) 17.8217 10.2894i 0.805102 0.464826i
\(491\) 16.6168 + 28.7811i 0.749904 + 1.29887i 0.947868 + 0.318663i \(0.103234\pi\)
−0.197964 + 0.980209i \(0.563433\pi\)
\(492\) 0 0
\(493\) −22.6870 + 39.2950i −1.02177 + 1.76976i
\(494\) 4.66175 0.209742
\(495\) 0 0
\(496\) −5.66227 −0.254243
\(497\) −17.2275 + 29.8389i −0.772760 + 1.33846i
\(498\) 0 0
\(499\) −11.7512 20.3537i −0.526057 0.911157i −0.999539 0.0303538i \(-0.990337\pi\)
0.473482 0.880803i \(-0.342997\pi\)
\(500\) 0.866025 0.500000i 0.0387298 0.0223607i
\(501\) 0 0
\(502\) 5.82532 + 3.36325i 0.259997 + 0.150109i
\(503\) −1.96441 −0.0875886 −0.0437943 0.999041i \(-0.513945\pi\)
−0.0437943 + 0.999041i \(0.513945\pi\)
\(504\) 0 0
\(505\) 6.82645i 0.303773i
\(506\) 10.7969 + 2.19580i 0.479979 + 0.0976154i
\(507\) 0 0
\(508\) 2.25868 1.30405i 0.100213 0.0578579i
\(509\) −0.489274 + 0.282483i −0.0216867 + 0.0125208i −0.510804 0.859697i \(-0.670652\pi\)
0.489117 + 0.872218i \(0.337319\pi\)
\(510\) 0 0
\(511\) 25.3928 43.9817i 1.12331 1.94564i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 11.3000i 0.498421i
\(515\) −0.929456 0.536621i −0.0409567 0.0236464i
\(516\) 0 0
\(517\) 1.62532 1.83736i 0.0714813 0.0808071i
\(518\) −32.2836 + 18.6390i −1.41846 + 0.818949i
\(519\) 0 0
\(520\) 3.11210 5.39031i 0.136474 0.236381i
\(521\) 7.99680i 0.350346i 0.984538 + 0.175173i \(0.0560485\pi\)
−0.984538 + 0.175173i \(0.943951\pi\)
\(522\) 0 0
\(523\) 23.4207i 1.02411i 0.858951 + 0.512057i \(0.171116\pi\)
−0.858951 + 0.512057i \(0.828884\pi\)
\(524\) −0.604819 + 1.04758i −0.0264217 + 0.0457636i
\(525\) 0 0
\(526\) 2.98399 + 5.16843i 0.130108 + 0.225354i
\(527\) −12.3404 21.3742i −0.537555 0.931073i
\(528\) 0 0
\(529\) −5.98210 + 10.3613i −0.260092 + 0.450492i
\(530\) −2.46463 −0.107057
\(531\) 0 0
\(532\) −3.93326 −0.170528
\(533\) −29.6610 17.1248i −1.28476 0.741758i
\(534\) 0 0
\(535\) −11.3566 + 6.55673i −0.490988 + 0.283472i
\(536\) −0.821341 1.42261i −0.0354765 0.0614472i
\(537\) 0 0
\(538\) −22.7318 13.1242i −0.980037 0.565825i
\(539\) −64.7232 + 21.6615i −2.78783 + 0.933026i
\(540\) 0 0
\(541\) 3.02049i 0.129861i 0.997890 + 0.0649304i \(0.0206825\pi\)
−0.997890 + 0.0649304i \(0.979317\pi\)
\(542\) −6.58888 3.80409i −0.283017 0.163400i
\(543\) 0 0
\(544\) 2.17940 + 3.77484i 0.0934412 + 0.161845i
\(545\) 6.36369 + 11.0222i 0.272591 + 0.472141i
\(546\) 0 0
\(547\) −21.5408 12.4366i −0.921017 0.531750i −0.0370579 0.999313i \(-0.511799\pi\)
−0.883959 + 0.467563i \(0.845132\pi\)
\(548\) 17.1751i 0.733683i
\(549\) 0 0
\(550\) −3.14515 + 1.05262i −0.134110 + 0.0448837i
\(551\) 6.75204 + 3.89829i 0.287647 + 0.166073i
\(552\) 0 0
\(553\) 32.4073 + 56.1310i 1.37810 + 2.38693i
\(554\) −8.68513 + 5.01436i −0.368996 + 0.213040i
\(555\) 0 0
\(556\) −10.5934 6.11608i −0.449259 0.259380i
\(557\) 3.70445 0.156963 0.0784814 0.996916i \(-0.474993\pi\)
0.0784814 + 0.996916i \(0.474993\pi\)
\(558\) 0 0
\(559\) 10.1741 0.430319
\(560\) −2.62577 + 4.54797i −0.110959 + 0.192187i
\(561\) 0 0
\(562\) −0.989858 1.71448i −0.0417546 0.0723211i
\(563\) −13.9825 24.2185i −0.589294 1.02069i −0.994325 0.106384i \(-0.966073\pi\)
0.405031 0.914303i \(-0.367261\pi\)
\(564\) 0 0
\(565\) −3.47121 + 6.01231i −0.146035 + 0.252940i
\(566\) 22.9975i 0.966657i
\(567\) 0 0
\(568\) 6.56094i 0.275291i
\(569\) 5.20091 9.00824i 0.218034 0.377645i −0.736173 0.676793i \(-0.763369\pi\)
0.954207 + 0.299148i \(0.0967024\pi\)
\(570\) 0 0
\(571\) −25.5328 + 14.7414i −1.06852 + 0.616908i −0.927775 0.373139i \(-0.878281\pi\)
−0.140740 + 0.990047i \(0.544948\pi\)
\(572\) −13.6775 + 15.4619i −0.571885 + 0.646496i
\(573\) 0 0
\(574\) 25.0259 + 14.4487i 1.04456 + 0.603078i
\(575\) 3.32202i 0.138538i
\(576\) 0 0
\(577\) −11.3733 −0.473475 −0.236738 0.971574i \(-0.576078\pi\)
−0.236738 + 0.971574i \(0.576078\pi\)
\(578\) −0.999607 + 1.73137i −0.0415782 + 0.0720155i
\(579\) 0 0
\(580\) 9.01507 5.20486i 0.374331 0.216120i
\(581\) −26.0394 + 15.0338i −1.08030 + 0.623709i
\(582\) 0 0
\(583\) 8.01026 + 1.62908i 0.331751 + 0.0674697i
\(584\) 9.67062i 0.400173i
\(585\) 0 0
\(586\) 9.24909 0.382076
\(587\) 18.1289 + 10.4667i 0.748259 + 0.432007i 0.825064 0.565039i \(-0.191139\pi\)
−0.0768057 + 0.997046i \(0.524472\pi\)
\(588\) 0 0
\(589\) −3.67271 + 2.12044i −0.151331 + 0.0873712i
\(590\) −0.506461 0.877216i −0.0208507 0.0361144i
\(591\) 0 0
\(592\) 3.54924 6.14746i 0.145873 0.252659i
\(593\) 39.7650 1.63295 0.816476 0.577380i \(-0.195925\pi\)
0.816476 + 0.577380i \(0.195925\pi\)
\(594\) 0 0
\(595\) −22.8905 −0.938418
\(596\) 2.09557 3.62963i 0.0858378 0.148675i
\(597\) 0 0
\(598\) 10.3384 + 17.9067i 0.422770 + 0.732259i
\(599\) 30.0865 17.3704i 1.22930 0.709737i 0.262416 0.964955i \(-0.415481\pi\)
0.966883 + 0.255218i \(0.0821473\pi\)
\(600\) 0 0
\(601\) −22.3427 12.8995i −0.911376 0.526183i −0.0305024 0.999535i \(-0.509711\pi\)
−0.880874 + 0.473352i \(0.843044\pi\)
\(602\) −8.58421 −0.349866
\(603\) 0 0
\(604\) 10.4140i 0.423738i
\(605\) 10.9178 1.34220i 0.443872 0.0545681i
\(606\) 0 0
\(607\) 29.9048 17.2656i 1.21380 0.700788i 0.250215 0.968190i \(-0.419499\pi\)
0.963585 + 0.267403i \(0.0861654\pi\)
\(608\) 0.648629 0.374486i 0.0263054 0.0151874i
\(609\) 0 0
\(610\) −0.462422 + 0.800939i −0.0187229 + 0.0324291i
\(611\) 4.60359 0.186241
\(612\) 0 0
\(613\) 6.59175i 0.266238i −0.991100 0.133119i \(-0.957501\pi\)
0.991100 0.133119i \(-0.0424993\pi\)
\(614\) −3.85292 2.22448i −0.155491 0.0897729i
\(615\) 0 0
\(616\) 11.5401 13.0457i 0.464966 0.525627i
\(617\) −22.5798 + 13.0364i −0.909027 + 0.524827i −0.880118 0.474755i \(-0.842537\pi\)
−0.0289089 + 0.999582i \(0.509203\pi\)
\(618\) 0 0
\(619\) 8.53992 14.7916i 0.343248 0.594524i −0.641786 0.766884i \(-0.721806\pi\)
0.985034 + 0.172361i \(0.0551394\pi\)
\(620\) 5.66227i 0.227402i
\(621\) 0 0
\(622\) 18.9852i 0.761235i
\(623\) −22.1072 + 38.2907i −0.885704 + 1.53408i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 11.2352 + 19.4599i 0.449048 + 0.777773i
\(627\) 0 0
\(628\) 5.55695 9.62492i 0.221746 0.384076i
\(629\) 30.9409 1.23369
\(630\) 0 0
\(631\) −40.0533 −1.59450 −0.797248 0.603651i \(-0.793712\pi\)
−0.797248 + 0.603651i \(0.793712\pi\)
\(632\) −10.6885 6.17100i −0.425165 0.245469i
\(633\) 0 0
\(634\) −7.53086 + 4.34795i −0.299089 + 0.172679i
\(635\) −1.30405 2.25868i −0.0517497 0.0896331i
\(636\) 0 0
\(637\) −110.926 64.0429i −4.39503 2.53747i
\(638\) −32.7402 + 10.9574i −1.29620 + 0.433809i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) −22.5994 13.0478i −0.892623 0.515356i −0.0178236 0.999841i \(-0.505674\pi\)
−0.874800 + 0.484485i \(0.839007\pi\)
\(642\) 0 0
\(643\) −13.5959 23.5487i −0.536168 0.928671i −0.999106 0.0422797i \(-0.986538\pi\)
0.462938 0.886391i \(-0.346795\pi\)
\(644\) −8.72286 15.1084i −0.343729 0.595356i
\(645\) 0 0
\(646\) 2.82725 + 1.63231i 0.111237 + 0.0642225i
\(647\) 49.6172i 1.95065i −0.220766 0.975327i \(-0.570856\pi\)
0.220766 0.975327i \(-0.429144\pi\)
\(648\) 0 0
\(649\) 1.06622 + 3.18579i 0.0418527 + 0.125053i
\(650\) −5.39031 3.11210i −0.211425 0.122066i
\(651\) 0 0
\(652\) 1.31619 + 2.27971i 0.0515460 + 0.0892803i
\(653\) −11.5265 + 6.65480i −0.451065 + 0.260422i −0.708280 0.705932i \(-0.750528\pi\)
0.257215 + 0.966354i \(0.417195\pi\)
\(654\) 0 0
\(655\) 1.04758 + 0.604819i 0.0409322 + 0.0236322i
\(656\) −5.50266 −0.214843
\(657\) 0 0
\(658\) −3.88419 −0.151421
\(659\) 0.890304 1.54205i 0.0346813 0.0600698i −0.848164 0.529734i \(-0.822292\pi\)
0.882845 + 0.469664i \(0.155625\pi\)
\(660\) 0 0
\(661\) −1.07164 1.85613i −0.0416818 0.0721950i 0.844432 0.535663i \(-0.179938\pi\)
−0.886114 + 0.463468i \(0.846605\pi\)
\(662\) −11.0808 19.1925i −0.430666 0.745936i
\(663\) 0 0
\(664\) 2.86275 4.95842i 0.111096 0.192424i
\(665\) 3.93326i 0.152525i
\(666\) 0 0
\(667\) 34.5812i 1.33899i
\(668\) 2.05504 3.55943i 0.0795119 0.137719i
\(669\) 0 0
\(670\) −1.42261 + 0.821341i −0.0549600 + 0.0317312i
\(671\) 2.03232 2.29747i 0.0784570 0.0886929i
\(672\) 0 0
\(673\) −0.768862 0.443903i −0.0296375 0.0171112i 0.485108 0.874454i \(-0.338780\pi\)
−0.514746 + 0.857343i \(0.672114\pi\)
\(674\) 9.47283i 0.364880i
\(675\) 0 0
\(676\) −25.7406 −0.990021
\(677\) 0.0859441 0.148859i 0.00330310 0.00572114i −0.864369 0.502858i \(-0.832282\pi\)
0.867672 + 0.497137i \(0.165615\pi\)
\(678\) 0 0
\(679\) −74.2923 + 42.8927i −2.85108 + 1.64607i
\(680\) 3.77484 2.17940i 0.144758 0.0835763i
\(681\) 0 0
\(682\) 3.74268 18.4029i 0.143315 0.704683i
\(683\) 37.6674i 1.44130i 0.693297 + 0.720652i \(0.256157\pi\)
−0.693297 + 0.720652i \(0.743843\pi\)
\(684\) 0 0
\(685\) −17.1751 −0.656226
\(686\) 61.7556 + 35.6546i 2.35784 + 1.36130i
\(687\) 0 0
\(688\) 1.41561 0.817304i 0.0539697 0.0311594i
\(689\) 7.67015 + 13.2851i 0.292210 + 0.506122i
\(690\) 0 0
\(691\) 22.4912 38.9559i 0.855606 1.48195i −0.0204751 0.999790i \(-0.506518\pi\)
0.876081 0.482163i \(-0.160149\pi\)
\(692\) −4.81606 −0.183079
\(693\) 0 0
\(694\) 28.2872 1.07377
\(695\) −6.11608 + 10.5934i −0.231996 + 0.401829i
\(696\) 0 0
\(697\) −11.9925 20.7717i −0.454249 0.786783i
\(698\) −21.0255 + 12.1391i −0.795827 + 0.459471i
\(699\) 0 0
\(700\) 4.54797 + 2.62577i 0.171897 + 0.0992448i
\(701\) 18.7504 0.708191 0.354095 0.935209i \(-0.384789\pi\)
0.354095 + 0.935209i \(0.384789\pi\)
\(702\) 0 0
\(703\) 5.31656i 0.200518i
\(704\) −0.660985 + 3.25009i −0.0249118 + 0.122492i
\(705\) 0 0
\(706\) −10.3031 + 5.94847i −0.387761 + 0.223874i
\(707\) 31.0465 17.9247i 1.16762 0.674127i
\(708\) 0 0
\(709\) −0.424093 + 0.734550i −0.0159271 + 0.0275866i −0.873879 0.486143i \(-0.838403\pi\)
0.857952 + 0.513730i \(0.171737\pi\)
\(710\) −6.56094 −0.246228
\(711\) 0 0
\(712\) 8.41930i 0.315527i
\(713\) −16.2901 9.40507i −0.610068 0.352223i
\(714\) 0 0
\(715\) 15.4619 + 13.6775i 0.578244 + 0.511510i
\(716\) 10.1532 5.86196i 0.379444 0.219072i
\(717\) 0 0
\(718\) 7.24127 12.5422i 0.270242 0.468072i
\(719\) 11.8199i 0.440809i 0.975409 + 0.220405i \(0.0707378\pi\)
−0.975409 + 0.220405i \(0.929262\pi\)
\(720\) 0 0
\(721\) 5.63618i 0.209902i
\(722\) −9.21952 + 15.9687i −0.343115 + 0.594293i
\(723\) 0 0
\(724\) 5.79525 + 10.0377i 0.215379 + 0.373047i
\(725\) −5.20486 9.01507i −0.193303 0.334811i
\(726\) 0 0
\(727\) 18.9116 32.7559i 0.701394 1.21485i −0.266583 0.963812i \(-0.585895\pi\)
0.967977 0.251038i \(-0.0807720\pi\)
\(728\) 32.6866 1.21145
\(729\) 0 0
\(730\) 9.67062 0.357926
\(731\) 6.17038 + 3.56247i 0.228220 + 0.131763i
\(732\) 0 0
\(733\) 6.67442 3.85348i 0.246525 0.142332i −0.371647 0.928374i \(-0.621207\pi\)
0.618172 + 0.786043i \(0.287873\pi\)
\(734\) 4.14790 + 7.18437i 0.153102 + 0.265180i
\(735\) 0 0
\(736\) 2.87695 + 1.66101i 0.106046 + 0.0612256i
\(737\) 5.16649 1.72911i 0.190310 0.0636927i
\(738\) 0 0
\(739\) 38.3377i 1.41027i −0.709071 0.705137i \(-0.750885\pi\)
0.709071 0.705137i \(-0.249115\pi\)
\(740\) −6.14746 3.54924i −0.225985 0.130472i
\(741\) 0 0
\(742\) −6.47155 11.2090i −0.237578 0.411497i
\(743\) −8.40585 14.5594i −0.308381 0.534131i 0.669628 0.742697i \(-0.266454\pi\)
−0.978008 + 0.208566i \(0.933120\pi\)
\(744\) 0 0
\(745\) −3.62963 2.09557i −0.132979 0.0767757i
\(746\) 12.1841i 0.446092i
\(747\) 0 0
\(748\) −13.7091 + 4.58815i −0.501255 + 0.167759i
\(749\) −59.6396 34.4330i −2.17918 1.25815i
\(750\) 0 0
\(751\) −18.0406 31.2472i −0.658310 1.14023i −0.981053 0.193740i \(-0.937938\pi\)
0.322743 0.946487i \(-0.395395\pi\)
\(752\) 0.640537 0.369814i 0.0233580 0.0134857i
\(753\) 0 0
\(754\) −56.1115 32.3960i −2.04346 1.17979i
\(755\) 10.4140 0.379003
\(756\) 0 0
\(757\) −26.6674 −0.969242 −0.484621 0.874724i \(-0.661042\pi\)
−0.484621 + 0.874724i \(0.661042\pi\)
\(758\) 11.4523 19.8360i 0.415968 0.720478i
\(759\) 0 0
\(760\) −0.374486 0.648629i −0.0135840 0.0235282i
\(761\) −5.58743 9.67771i −0.202544 0.350817i 0.746803 0.665045i \(-0.231588\pi\)
−0.949348 + 0.314228i \(0.898254\pi\)
\(762\) 0 0
\(763\) −33.4192 + 57.8838i −1.20986 + 2.09553i
\(764\) 5.96111i 0.215666i
\(765\) 0 0
\(766\) 19.1161i 0.690694i
\(767\) −3.15231 + 5.45996i −0.113823 + 0.197148i
\(768\) 0 0
\(769\) 40.0727 23.1360i 1.44506 0.834304i 0.446877 0.894596i \(-0.352536\pi\)
0.998181 + 0.0602912i \(0.0192029\pi\)
\(770\) −13.0457 11.5401i −0.470135 0.415878i
\(771\) 0 0
\(772\) −8.79421 5.07734i −0.316510 0.182737i
\(773\) 3.86173i 0.138897i 0.997586 + 0.0694483i \(0.0221239\pi\)
−0.997586 + 0.0694483i \(0.977876\pi\)
\(774\) 0 0
\(775\) 5.66227 0.203395
\(776\) 8.16763 14.1467i 0.293201 0.507839i
\(777\) 0 0
\(778\) 26.6198 15.3689i 0.954364 0.551003i
\(779\) −3.56919 + 2.06067i −0.127879 + 0.0738312i
\(780\) 0 0
\(781\) 21.3237 + 4.33668i 0.763020 + 0.155179i
\(782\) 14.4800i 0.517805i
\(783\) 0 0
\(784\) −20.5787 −0.734954
\(785\) −9.62492 5.55695i −0.343528 0.198336i
\(786\) 0 0
\(787\) 16.4345 9.48845i 0.585826 0.338227i −0.177619 0.984099i \(-0.556840\pi\)
0.763445 + 0.645872i \(0.223506\pi\)
\(788\) −12.9370 22.4075i −0.460860 0.798234i
\(789\) 0 0
\(790\) −6.17100 + 10.6885i −0.219554 + 0.380279i
\(791\) −36.4584 −1.29631
\(792\) 0 0
\(793\) 5.75641 0.204416
\(794\) 9.57186 16.5789i 0.339693 0.588365i
\(795\) 0 0
\(796\) 9.51981 + 16.4888i 0.337421 + 0.584430i
\(797\) −22.5593 + 13.0246i −0.799091 + 0.461355i −0.843153 0.537673i \(-0.819303\pi\)
0.0440623 + 0.999029i \(0.485970\pi\)
\(798\) 0 0
\(799\) 2.79198 + 1.61195i 0.0987731 + 0.0570266i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 1.89328i 0.0668539i
\(803\) −31.4304 6.39214i −1.10916 0.225574i
\(804\) 0 0
\(805\) −15.1084 + 8.72286i −0.532502 + 0.307440i
\(806\) 30.5214 17.6215i 1.07507 0.620692i
\(807\) 0 0
\(808\) −3.41322 + 5.91188i −0.120077 + 0.207979i
\(809\) 19.6768 0.691800 0.345900 0.938271i \(-0.387574\pi\)
0.345900 + 0.938271i \(0.387574\pi\)
\(810\) 0 0
\(811\) 21.6225i 0.759270i 0.925136 + 0.379635i \(0.123950\pi\)
−0.925136 + 0.379635i \(0.876050\pi\)
\(812\) 47.3431 + 27.3335i 1.66142 + 0.959219i
\(813\) 0 0
\(814\) 17.6338 + 15.5987i 0.618065 + 0.546735i
\(815\) 2.27971 1.31619i 0.0798547 0.0461042i
\(816\) 0 0
\(817\) 0.612138 1.06025i 0.0214160 0.0370936i
\(818\) 3.77765i 0.132083i
\(819\) 0 0
\(820\) 5.50266i 0.192161i
\(821\) 0.412392 0.714283i 0.0143926 0.0249287i −0.858739 0.512413i \(-0.828752\pi\)
0.873132 + 0.487484i \(0.162085\pi\)
\(822\) 0 0
\(823\) −18.7187 32.4217i −0.652492 1.13015i −0.982516 0.186176i \(-0.940390\pi\)
0.330025 0.943972i \(-0.392943\pi\)
\(824\) 0.536621 + 0.929456i 0.0186941 + 0.0323791i
\(825\) 0 0
\(826\) 2.65970 4.60674i 0.0925428 0.160289i
\(827\) −37.1032 −1.29020 −0.645102 0.764096i \(-0.723185\pi\)
−0.645102 + 0.764096i \(0.723185\pi\)
\(828\) 0 0
\(829\) −36.7868 −1.27766 −0.638829 0.769349i \(-0.720581\pi\)
−0.638829 + 0.769349i \(0.720581\pi\)
\(830\) −4.95842 2.86275i −0.172109 0.0993674i
\(831\) 0 0
\(832\) −5.39031 + 3.11210i −0.186875 + 0.107892i
\(833\) −44.8493 77.6813i −1.55394 2.69150i
\(834\) 0 0
\(835\) −3.55943 2.05504i −0.123179 0.0711176i
\(836\) 0.788380 + 2.35563i 0.0272667 + 0.0814713i
\(837\) 0 0
\(838\) 18.9477i 0.654537i
\(839\) −13.0381 7.52757i −0.450126 0.259880i 0.257757 0.966210i \(-0.417016\pi\)
−0.707883 + 0.706329i \(0.750350\pi\)
\(840\) 0 0
\(841\) −39.6810 68.7296i −1.36831 2.36999i
\(842\) 4.89817 + 8.48389i 0.168802 + 0.292374i
\(843\) 0 0
\(844\) 14.2014 + 8.19916i 0.488831 + 0.282227i
\(845\) 25.7406i 0.885502i
\(846\) 0 0
\(847\) 34.7719 + 46.1296i 1.19478 + 1.58503i
\(848\) 2.13443 + 1.23231i 0.0732966 + 0.0423178i
\(849\) 0 0
\(850\) −2.17940 3.77484i −0.0747530 0.129476i
\(851\) 20.4219 11.7906i 0.700055 0.404177i
\(852\) 0 0
\(853\) 22.8609 + 13.1987i 0.782742 + 0.451916i 0.837401 0.546589i \(-0.184074\pi\)
−0.0546593 + 0.998505i \(0.517407\pi\)
\(854\) −4.85686 −0.166198
\(855\) 0 0
\(856\) 13.1135 0.448209
\(857\) 27.1443 47.0154i 0.927233 1.60601i 0.139302 0.990250i \(-0.455514\pi\)
0.787930 0.615764i \(-0.211153\pi\)
\(858\) 0 0
\(859\) 7.15517 + 12.3931i 0.244131 + 0.422847i 0.961887 0.273447i \(-0.0881639\pi\)
−0.717756 + 0.696295i \(0.754831\pi\)
\(860\) −0.817304 1.41561i −0.0278698 0.0482720i
\(861\) 0 0
\(862\) −10.3223 + 17.8788i −0.351580 + 0.608954i
\(863\) 9.34374i 0.318064i −0.987273 0.159032i \(-0.949163\pi\)
0.987273 0.159032i \(-0.0508374\pi\)
\(864\) 0 0
\(865\) 4.81606i 0.163751i
\(866\) −9.90919 + 17.1632i −0.336728 + 0.583230i
\(867\) 0 0
\(868\) −25.7518 + 14.8678i −0.874074 + 0.504647i
\(869\) 27.1212 30.6596i 0.920025 1.04006i
\(870\) 0 0
\(871\) 8.85457 + 5.11219i 0.300026 + 0.173220i
\(872\) 12.7274i 0.431004i
\(873\) 0 0
\(874\) 2.48810 0.0841612
\(875\) 2.62577 4.54797i 0.0887673 0.153749i
\(876\) 0 0
\(877\) 26.9922 15.5840i 0.911462 0.526233i 0.0305610 0.999533i \(-0.490271\pi\)
0.880901 + 0.473300i \(0.156937\pi\)
\(878\) −16.5483 + 9.55418i −0.558479 + 0.322438i
\(879\) 0 0
\(880\) 3.25009 + 0.660985i 0.109561 + 0.0222818i
\(881\) 55.9686i 1.88563i 0.333318 + 0.942814i \(0.391832\pi\)
−0.333318 + 0.942814i \(0.608168\pi\)
\(882\) 0 0
\(883\) −16.4039 −0.552034 −0.276017 0.961153i \(-0.589015\pi\)
−0.276017 + 0.961153i \(0.589015\pi\)
\(884\) −23.4953 13.5650i −0.790233 0.456241i
\(885\) 0 0
\(886\) −0.733684 + 0.423593i −0.0246486 + 0.0142309i
\(887\) −23.6084 40.8910i −0.792693 1.37298i −0.924294 0.381682i \(-0.875345\pi\)
0.131601 0.991303i \(-0.457988\pi\)
\(888\) 0 0
\(889\) 6.84828 11.8616i 0.229684 0.397824i
\(890\) −8.41930 −0.282215
\(891\) 0 0
\(892\) 21.9038 0.733393
\(893\) 0.276980 0.479744i 0.00926880 0.0160540i
\(894\) 0 0
\(895\) −5.86196 10.1532i −0.195944 0.339385i
\(896\) 4.54797 2.62577i 0.151937 0.0877209i
\(897\) 0 0
\(898\) 26.5518 + 15.3297i 0.886044 + 0.511558i
\(899\) 58.9426 1.96585
\(900\) 0 0
\(901\) 10.7428i 0.357896i
\(902\) 3.63718 17.8842i 0.121105 0.595477i
\(903\) 0 0
\(904\) 6.01231 3.47121i 0.199967 0.115451i
\(905\) 10.0377 5.79525i 0.333663 0.192641i
\(906\) 0 0
\(907\) −12.7126 + 22.0189i −0.422115 + 0.731125i −0.996146 0.0877088i \(-0.972045\pi\)
0.574031 + 0.818833i \(0.305379\pi\)
\(908\) 17.8674 0.592951
\(909\) 0 0
\(910\) 32.6866i 1.08355i
\(911\) −2.74924 1.58727i −0.0910864 0.0525887i 0.453765 0.891121i \(-0.350081\pi\)
−0.544851 + 0.838533i \(0.683414\pi\)
\(912\) 0 0
\(913\) 14.2231 + 12.5816i 0.470716 + 0.416391i
\(914\) −34.5586 + 19.9524i −1.14310 + 0.659966i
\(915\) 0 0
\(916\) −4.31866 + 7.48013i −0.142692 + 0.247151i
\(917\) 6.35247i 0.209777i
\(918\) 0 0
\(919\) 13.8687i 0.457485i −0.973487 0.228743i \(-0.926539\pi\)
0.973487 0.228743i \(-0.0734615\pi\)
\(920\) 1.66101 2.87695i 0.0547618 0.0948502i
\(921\) 0 0
\(922\) 20.0031 + 34.6465i 0.658769 + 1.14102i
\(923\) 20.4183 + 35.3655i 0.672075 + 1.16407i
\(924\) 0 0
\(925\) −3.54924 + 6.14746i −0.116698 + 0.202127i
\(926\) −1.34069 −0.0440577
\(927\) 0 0
\(928\) −10.4097 −0.341715
\(929\) 27.8096 + 16.0559i 0.912405 + 0.526777i 0.881204 0.472736i \(-0.156734\pi\)
0.0312007 + 0.999513i \(0.490067\pi\)
\(930\) 0 0
\(931\) −13.3479 + 7.70644i −0.437461 + 0.252568i
\(932\) 8.30762 + 14.3892i 0.272125 + 0.471334i
\(933\) 0 0
\(934\) −3.84347 2.21903i −0.125762 0.0726088i
\(935\) 4.58815 + 13.7091i 0.150049 + 0.448336i
\(936\) 0 0
\(937\) 22.7790i 0.744158i −0.928201 0.372079i \(-0.878645\pi\)
0.928201 0.372079i \(-0.121355\pi\)
\(938\) −7.47087 4.31331i −0.243933 0.140835i
\(939\) 0 0
\(940\) −0.369814 0.640537i −0.0120620 0.0208920i
\(941\) 12.1465 + 21.0384i 0.395965 + 0.685832i 0.993224 0.116217i \(-0.0370767\pi\)
−0.597259 + 0.802049i \(0.703743\pi\)
\(942\) 0 0
\(943\) −15.8309 9.13996i −0.515524 0.297638i
\(944\) 1.01292i 0.0329678i
\(945\) 0 0
\(946\) 1.72061 + 5.14109i 0.0559420 + 0.167151i
\(947\) 32.6946 + 18.8763i 1.06243 + 0.613396i 0.926104 0.377268i \(-0.123136\pi\)
0.136329 + 0.990664i \(0.456470\pi\)
\(948\) 0 0
\(949\) −30.0959 52.1276i −0.976954 1.69213i
\(950\) −0.648629 + 0.374486i −0.0210443 + 0.0121499i
\(951\) 0 0
\(952\) 19.8237 + 11.4452i 0.642491 + 0.370942i
\(953\) 32.1754 1.04226 0.521132 0.853476i \(-0.325510\pi\)
0.521132 + 0.853476i \(0.325510\pi\)
\(954\) 0 0
\(955\) −5.96111 −0.192897
\(956\) 6.12388 10.6069i 0.198060 0.343051i
\(957\) 0 0
\(958\) −10.8806 18.8457i −0.351535 0.608876i
\(959\) −45.0978 78.1117i −1.45628 2.52236i
\(960\) 0 0
\(961\) −0.530645 + 0.919104i −0.0171176 + 0.0296485i
\(962\) 44.1822i 1.42449i
\(963\) 0 0
\(964\) 15.5481i 0.500770i
\(965\) −5.07734 + 8.79421i −0.163445 + 0.283096i
\(966\) 0 0
\(967\) 24.6705 14.2435i 0.793351 0.458042i −0.0477898 0.998857i \(-0.515218\pi\)
0.841141 + 0.540816i \(0.181884\pi\)
\(968\) −10.1262 4.29653i −0.325468 0.138096i
\(969\) 0 0
\(970\) −14.1467 8.16763i −0.454225 0.262247i
\(971\) 7.25145i 0.232710i −0.993208 0.116355i \(-0.962879\pi\)
0.993208 0.116355i \(-0.0371211\pi\)
\(972\) 0 0
\(973\) −64.2377 −2.05937
\(974\) 1.09625 1.89877i 0.0351263 0.0608405i
\(975\) 0 0
\(976\) 0.800939 0.462422i 0.0256374 0.0148018i
\(977\) −9.85390 + 5.68915i −0.315254 + 0.182012i −0.649275 0.760554i \(-0.724928\pi\)
0.334021 + 0.942566i \(0.391594\pi\)
\(978\) 0 0
\(979\) 27.3635 + 5.56503i 0.874541 + 0.177859i
\(980\) 20.5787i 0.657363i
\(981\) 0 0
\(982\) −33.2335 −1.06052
\(983\) 37.4974 + 21.6492i 1.19598 + 0.690501i 0.959657 0.281173i \(-0.0907235\pi\)
0.236325 + 0.971674i \(0.424057\pi\)
\(984\) 0 0
\(985\) −22.4075 + 12.9370i −0.713962 + 0.412206i
\(986\) −22.6870 39.2950i −0.722500 1.25141i
\(987\) 0 0
\(988\) −2.33087 + 4.03719i −0.0741549 + 0.128440i
\(989\) 5.43019 0.172670
\(990\) 0 0
\(991\) −20.6875 −0.657161 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(992\) 2.83113 4.90367i 0.0898886 0.155692i
\(993\) 0 0
\(994\) −17.2275 29.8389i −0.546424 0.946434i
\(995\) 16.4888 9.51981i 0.522730 0.301798i
\(996\) 0 0
\(997\) 35.9742 + 20.7697i 1.13932 + 0.657784i 0.946261 0.323404i \(-0.104827\pi\)
0.193055 + 0.981188i \(0.438161\pi\)
\(998\) 23.5024 0.743957
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.a.791.1 48
3.2 odd 2 990.2.t.b.461.1 yes 48
9.4 even 3 990.2.t.a.131.1 48
9.5 odd 6 2970.2.t.b.2771.1 48
11.10 odd 2 2970.2.t.b.791.1 48
33.32 even 2 990.2.t.a.461.1 yes 48
99.32 even 6 inner 2970.2.t.a.2771.1 48
99.76 odd 6 990.2.t.b.131.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.1 48 9.4 even 3
990.2.t.a.461.1 yes 48 33.32 even 2
990.2.t.b.131.1 yes 48 99.76 odd 6
990.2.t.b.461.1 yes 48 3.2 odd 2
2970.2.t.a.791.1 48 1.1 even 1 trivial
2970.2.t.a.2771.1 48 99.32 even 6 inner
2970.2.t.b.791.1 48 11.10 odd 2
2970.2.t.b.2771.1 48 9.5 odd 6