Properties

Label 2-296208-1.1-c1-0-141
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s + 2·13-s + 17-s − 5·19-s + 6·23-s − 25-s + 10·29-s + 9·31-s + 2·35-s − 11·37-s + 12·41-s − 4·43-s − 12·47-s − 6·49-s − 14·53-s + 10·59-s − 61-s + 4·65-s + 11·67-s − 7·73-s + 15·79-s + 2·83-s + 2·85-s + 8·89-s + 2·91-s − 10·95-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s + 0.554·13-s + 0.242·17-s − 1.14·19-s + 1.25·23-s − 1/5·25-s + 1.85·29-s + 1.61·31-s + 0.338·35-s − 1.80·37-s + 1.87·41-s − 0.609·43-s − 1.75·47-s − 6/7·49-s − 1.92·53-s + 1.30·59-s − 0.128·61-s + 0.496·65-s + 1.34·67-s − 0.819·73-s + 1.68·79-s + 0.219·83-s + 0.216·85-s + 0.847·89-s + 0.209·91-s − 1.02·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15383591792549, −12.41271355731574, −12.13491650821898, −11.48759239282142, −11.00474739389441, −10.67731770565181, −10.18746686260176, −9.661941509397573, −9.416258072257141, −8.611298885567295, −8.323496384201237, −8.092485653077579, −7.230325720013736, −6.694664336515718, −6.266479329722016, −6.112163153351422, −5.148792435284024, −4.931234409448035, −4.495718889352002, −3.689593143703568, −3.200395178738506, −2.559824044837870, −2.105722186167734, −1.353749474813527, −1.015900546073950, 0, 1.015900546073950, 1.353749474813527, 2.105722186167734, 2.559824044837870, 3.200395178738506, 3.689593143703568, 4.495718889352002, 4.931234409448035, 5.148792435284024, 6.112163153351422, 6.266479329722016, 6.694664336515718, 7.230325720013736, 8.092485653077579, 8.323496384201237, 8.611298885567295, 9.416258072257141, 9.661941509397573, 10.18746686260176, 10.67731770565181, 11.00474739389441, 11.48759239282142, 12.13491650821898, 12.41271355731574, 13.15383591792549

Graph of the $Z$-function along the critical line