Properties

Label 2-296208-1.1-c1-0-104
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 2·13-s − 17-s + 4·19-s + 2·23-s − 5·25-s − 6·31-s − 10·41-s + 4·43-s − 4·47-s − 3·49-s + 2·53-s − 4·59-s − 4·67-s − 2·71-s + 14·73-s + 6·79-s + 12·83-s + 2·89-s − 4·91-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 2·119-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.554·13-s − 0.242·17-s + 0.917·19-s + 0.417·23-s − 25-s − 1.07·31-s − 1.56·41-s + 0.609·43-s − 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.520·59-s − 0.488·67-s − 0.237·71-s + 1.63·73-s + 0.675·79-s + 1.31·83-s + 0.211·89-s − 0.419·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.183·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99763039045799, −12.33016225938049, −12.02648281875856, −11.51654857419279, −11.18416937183549, −10.69867782392244, −10.16213122101403, −9.707589251911823, −9.224926622680326, −8.878218332744144, −8.127687984164392, −7.888606358879243, −7.382326897560924, −6.928273134920524, −6.378682699349237, −5.775744709896233, −5.225234468325810, −4.935474867060247, −4.412030425056754, −3.645458309576007, −3.364583509906286, −2.585307076123598, −1.960904154120774, −1.581374403056555, −0.7697513077710186, 0, 0.7697513077710186, 1.581374403056555, 1.960904154120774, 2.585307076123598, 3.364583509906286, 3.645458309576007, 4.412030425056754, 4.935474867060247, 5.225234468325810, 5.775744709896233, 6.378682699349237, 6.928273134920524, 7.382326897560924, 7.888606358879243, 8.127687984164392, 8.878218332744144, 9.224926622680326, 9.707589251911823, 10.16213122101403, 10.69867782392244, 11.18416937183549, 11.51654857419279, 12.02648281875856, 12.33016225938049, 12.99763039045799

Graph of the $Z$-function along the critical line